References
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, Series B 57(1): 289–300.
- Berry, K.J., Johnston, J.E. and Mielke, P.W. (2018). The Measurement of Association: A Permutation Statistical Approach, Springer International Publishing, Cham.
- Bonnini, S. and Cavallo, G. (2021). A study on the satisfaction with distance learning of university students with disabilities: Bivariate regression analysis using a multiple permutation test, Statistica Applicata—Italian Journal of Applied Statistics 33(2): 143–162.
- Bonnini, S., Corain, L., Marozzi, M. and Salmaso, L. (2014). Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R, John Wiley & Sons, Chichester.
- Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research 7(1): 1–30.
- Denkowska, S. (2013). Non-classical methods multiple testing procedures, Statistical Review 60(4): 461–476 (in Polish).
- Dickhaus, T. (2014). Simultaneous Statistical Inference with Applications in the Life Sciences, Springer, Berlin/Heidelberg.
- Dudoit, S. and van der Laan, M.J. (2008). Multiple Testing Procedures with Applications to Genomics, Springer Series in Statistics, Springer, New York.
- Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman & Hall/CRC, Boca Raton.
- Eklund, A., Andersson, M. and Knutsson, H. (2011). Fast random permutation tests enable objective evaluation of methods for single-subject FMRI analysis, International Journal of Biomedical Imaging 2011: 1–15, Article ID: 627947, DOI: 10.1155/2011/627947.
- Ekvall, M., Höhle, M. and Käll, L. (2020). Parallelized calculation of permutation tests, Bioinformatics 36(22–23): 5392–5397.
- Good, P.I. (2006). Permutation, Parametric, and Bootstrap Tests of Hypotheses, Springer Science+Business Media, DOI: 10.1007/s00184-006-0088-1.
- Hochberg, Y. and Tamhane, A.C. (1987). Simultaneous Statistical Inference, John Wiley and Sons, New York.
- Holm, S. (1979). A simple sequentially rejective multiple test procedure, Scandinavian Journal of Statistics 6(2): 65–70.
- Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 135–153, DOI: 10.34768/amcs-2021-0007.
- Pesarin, F. and Salmaso, L. (2010). Permutation Tests for Complex Data: Theory, Applications and Software, Wiley, Chichester.
- Simon, R. and Simon, N.R. (2011). Using randomization tests to preserve type I error with response adaptive and covariate adaptive randomization, Statistics & Probability Letters 81(7): 767–772.
- Stapor, K., Ksieniewicz, P., Garcia, S. and Wozniak, M. (2021). How to design the fair experimental classifier evaluation, Applied Soft Computing 104: 1–12
- Toth, D. (2020). A permutation test on complex sample data, Journal of Survey Statistics and Methodology 8(4): 772–791.
- van Ginkel, J.R. (2019). Significance tests and estimates for R2 for multiple regression in multiply imputed datasets: A cautionary note on earlier findings, and alternative solutions, Multivariate Behavioral Research 54(4): 514–529.
- Westfall, P.H. and Young, S.S. (1993). Resampling Based Multiple Testing, Wiley, New York.
- Zar, J.H. (2010). Biostatistical Analysis, Prentice-Hall/Pearson, Upper Saddle River.
- Żelasko, D. and Pławiak P. (2021). Ensemble learning techniques for transmission quality classification in a Pay&Require multi-layer network, International Journal of Applied Mathematics and Computer Science 31(1): 135–153, DOI: 10.34768/amcs-2021-0010.