References
- Ashok, K. and Gopikrishnan, S. (2023). Improving security performance of healthcare data in the Internet of medical things using a hybrid metaheuristic model, International Journal of Applied Mathematics and Computer Science 33(4): 623–636, DOI: 10.34768/amcs-2023-0044.
- Bennett, C.H. and Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science 560(Part 1): 7–11, DOI: 10.1016/j.tcs.2014.05.025.
- Borylo, P., Cholda, P., Domzal, J., Jaglarz, P., Jurkiewicz, P., Lason, A., Niemiec, M., Rzepka, M., Rzym, G. and Wojcik, R. (2017). SDNroute: Integrated system supporting routing in software defined networks, 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, pp. 1–4.
- Cao, Y., Zhao, Y., Colman-Meixner, C., Yu, X. and Zhang, J. (2017a). Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD), Optics Express 25(22): 26453–26467.
- Cao, Y., Zhao, Y., Yu, X. and Wu, Y. (2017b). Resource assignment strategy in optical networks integrated with quantum key distribution, Journal of Optical Communications and Networking 9(11): 995–1004.
- Dianati, M., Alléaume, R., Gagnaire, M. and Shen, X.S. (2008). Architecture and protocols of the future european quantum key distribution network, Security and Communication Networks 1(1): 57–74.
- Dijkstra, E.W. (1959). A note on two problems in connexion with graphs, Numerische Mathematik 1(1): 269–271, DOI: 10.1007/BF01386390.
- Dubey, S.P., Kedar, G.D. and Ghate, S.H. (2021). A communication network routing problem: Modeling and optimization using non-cooperative game theory, International Journal of Applied Mathematics and Computer Science 31(1): 155–164, DOI: 10.34768/amcs-2021-0011.
- El-Douh, A.A.-R., Lu, S.F., Elkouny, A.A. and Amein, A. (2022). Hybrid cryptography with a one time stamp to secure contact tracing for COVID-19 infection, International Journal of Applied Mathematics and Computer Science 32(1): 139–146, DOI: 10.34768/amcs-2022-0011.
- ETSI (2019). Quantum key distribution (QKD); Protocol and data format of REST-based key delivery API, Technical report, European Telecommunications Standards Institute, Sophia Antipoli, https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf.
- Gisin, N., Ribordy, G., Tittel, W. and Zbinden, H. (2002). Quantum cryptography, Reviews of Modern Physics 74(1): 145.
- Hagberg, A.A., Schult, D.A. and Swart, P.J. (2008). Exploring network structure, dynamics, and function using NetworkX, Proceedings of the 7th Python in Science Conference, Pasadena, USA, pp. 11–15, DOI: 10.25080/TCWV9851.
- ITUTSS (2019). Recommendation y.3800 (10/19): Overview on networks supporting quantum key distribution, Technical report, International Telecommunication Union Telecommunication Standardization Sector, Geneva, htt ps://www.itu.int/rec/T-REC-Y.3800-201910-I/en.
- Ivanov, A. and Stoianov, N. (2023). Implications of the arithmetic ratio of prime numbers for RSA security, International Journal of Applied Mathematics and Computer Science 33(1): 57–70, DOI: 10.34768/amcs-2023-0005.
- Johann, T., Giemsa, D., Kuehl, S., Dochhan, A. and Pachnicke, S. (2023). Routing optimization of QKD-networks using machine-learning based prediction, Photonic Networks: 24th ITG-Symposium, Berlin, Germany, pp. 1–5.
- Kurek, T., Niemiec, M. and Lason, A. (2015). Taking back control of privacy: A novel framework for preserving cloud-based firewall policy confidentiality, International Journal of Information Security 15(3): 235–250.
- Lee, C., Kim, Y., Shim, K. and Lee, W. (2023). Key-count differential-based proactive key relay algorithm for scalable quantum-secured networking, Journal of Optical Communications and Networking 15(5): 282–293.
- Li, X., Shao, Z. and Qian, J. (2002). Optimizing method based on autonomous animats: Fish-swarm algorithm, System Engineering Theory and Practice 22(11): 32–38 (in Chinese).
- Mehic, M., Niemiec, M., Rass, S., Ma, J., Peev, M., Aguado, A., Martin, V., Schauer, S., Poppe, A., Pacher, C. and Voznak, M. (2020). Quantum key distribution: A networking perspective, ACM Computing Surveys (CSUR) 53(5): 1–41, DOI: 10.1145/3402192.
- NIST (2024). Module-lattice-based key-encapsulation mechanism standard, Technical report, Information Technology Laboratory, National Institute of Standars and Technology, Gaithersburg.
- Orlowski, S., Wessäly, R., Pióro, M. and Tomaszewski, A. (2010). SNDLIB 1.0—Survivable network design library, Networks 55(3): 276–286.
- Shor, P.W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing 26(5): 1484–1509, DOI: 10.1137/S0097539795293172.
- Toshiba (2024). Quantum key distribution products, Toshiba, Tokyo, https://www.global.toshiba/ww/products-solutions/security-ict/qkd/products.html.
- Wootters, W.K. and Zurek, W.H. (1982). A single quantum cannot be cloned, Nature 299(5886): 802–803.
- Yang, C., Zhang, H. and Su, J. (2017). The QKD network: Model and routing scheme, Journal of Modern Optics 64(21): 2350–2362.
- Yang, C., Zhang, H. and Su, J. (2018). Quantum key distribution network: Optimal secret-key-aware routing method for trust relaying, China Communications 15(2): 33–45, DOI: 10.1109/CC.2018.8300270.
- Yilmaz, M.B. and Öztürk, K. (2025). Vanilla convolutional neural network is all you need for online and offline signature verification, International Journal of Applied Mathematics and Computer Science 35(2): 357–370, DOI: 10.61822/amcs-2025-0025.