Ahmed, S.F., Alam, M. S.B., Afrin, S., Rafa, S.J., Rafa, N. and Gandomi, A.H. (2024). Insights into Internet of medical things (IoMT): Data fusion, security issues and potential solutions, Information Fusion102: 102060.
Camara, C., Peris-Lopez, P., de Fuentes, J.M. and Marchal, S. (2021). Access control for implantable medical devices, IEEE Transactions on Emerging Topics in Computing9(3): 1126–1138.
Carreon-Rascon, A.S. and Rozenblit, J.W. (2022). Towards requirements for self-healing as a means of mitigating cyber-intrusions in medical devices, 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, pp. 1500–1505.
Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y. and Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning, IEEE Internet of Things Journal6(3): 4005–4018.
Deja R., Froelich W., and Deja G. (2021). Mining clinical pathways for daily insulin therapy of diabetic children, International Journal of Applied Mathematics and Computer Science31(1): 107–121, DOI: 10.34768/amcs-2021-0008.
Dénes-Fazakas, L., Fazakas, G.D., Eigner, G., Kovács, L. and Szilágyi, L. (2024). Review of reinforcement learning-based control algorithms in artificial pancreas systems for diabetes mellitus management, 2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, pp. 565–572.
Dong, X., Hariri, S., Xue, L., Chen, H., Zhang, M., Pavuluri, S. and Rao, S. (2003). Autonomia: An autonomic computing environment, Conference Proceedings of the 2003 IEEE International Performance, Computing, and Communications Conference, Phoenix, USA, pp. 61–68.
Fox, I., Lee, J., Pop-Busui, R. and Wiens, J. (2020). Deep reinforcement learning for closed-loop blood glucose control, Proceedings of Machine Learning Research2020(5): 508–536.
Hassija, V., Chamola, V., Bajpai, B.C., Naren and Zeadally, S. (2021). Security issues in implantable medical devices: Fact or fiction?, Sustainable Cities and Society66: 102552.
Johnphill, O., Sadiq, A.S., Al-Obeidat, F., Al-Khateeb, H., Taheir, M.A., Kaiwartya, O. and Ali, M. (2023). Self-healing in cyber–physical systems using machine learning: A critical analysis of theories and tools, Future Internet15(7), Article no. 244.
Kegyes, T., Süle, Z. and Abonyi, J. (2021). The applicability of reinforcement learning methods in the development of industry 4.0 applications, Complexity2021(1): 7179374.
Muhammad, G., Alshehri, F., Karray, F., Saddik, A.E., Alsulaiman, M. and Falk, T.H. (2021). A comprehensive survey on multimodal medical signals fusion for smart healthcare systems, Information Fusion76: 355–375.
NRC (2001). Embedded, Everywhere: A Research Agenda for Networked Systems of Embedded Computers, National Research Council/National Academies Press, Washington, pp. 77–79.
Pirbhulal, S., Zhang, H., Wu, W., Mukhopadhyay, S.C. and Zhang, Y.-T. (2018). Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks, IEEE Transactions on Biomedical Engineering65(12): 2751–2759.
Rao, A., Carreón, N., Lysecky, R. and Rozenblit, J. (2017). Probabilistic threat detection for risk management in cyber-physical medical systems, IEEE Software35(1): 38–43.
Rathore, H., Mohamed, A. and Guizani, M. (2020). Deep learning-based security schemes for implantable medical devices, in A. Mohamed (Ed.), Energy Efficiency of Medical Devices and Healthcare Applications, Academic Press, Cambridge, pp. 109–130.
Seiger, R., Huber, S. and Schlegel, T. (2015). Proteus: An integrated system for process execution in cyber-physical systems, International Workshop on Business Process Modeling, Development and Support, Stockholm, Sweden, pp. 265–280, DOI: 10.1007/978-3-319-19237-6_17.
Seiger, R., Huber, S. and Schlegel, T. (2018). Toward an execution system for self-healing workflows in cyber-physical systems, Software & Systems Modeling17(2): 551–572, DOI: 10.1007/s10270-016-0551-z.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L. and Polosukhin, I. (2017). Attention is all you need, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, USA.