Have a personal or library account? Click to login
Mitigating Cyber–Intrusions in Medical Devices with Agent–Based Self–Healing Cover

Mitigating Cyber–Intrusions in Medical Devices with Agent–Based Self–Healing

Open Access
|Sep 2025

References

  1. Ahmed, S.F., Alam, M. S.B., Afrin, S., Rafa, S.J., Rafa, N. and Gandomi, A.H. (2024). Insights into Internet of medical things (IoMT): Data fusion, security issues and potential solutions, Information Fusion 102: 102060.
  2. Baker, S.D. (2022). The ironic state of cybersecurity in medical devices, Biomedical Instrumentation & Technology 56(3): 98–101.
  3. Camara, C., Peris-Lopez, P., de Fuentes, J.M. and Marchal, S. (2021). Access control for implantable medical devices, IEEE Transactions on Emerging Topics in Computing 9(3): 1126–1138.
  4. Carreon-Rascon, A.S. and Rozenblit, J.W. (2022). Towards requirements for self-healing as a means of mitigating cyber-intrusions in medical devices, 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, pp. 1500–1505.
  5. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y. and Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning, IEEE Internet of Things Journal 6(3): 4005–4018.
  6. Deja R., Froelich W., and Deja G. (2021). Mining clinical pathways for daily insulin therapy of diabetic children, International Journal of Applied Mathematics and Computer Science 31(1): 107–121, DOI: 10.34768/amcs-2021-0008.
  7. Dénes-Fazakas, L., Fazakas, G.D., Eigner, G., Kovács, L. and Szilágyi, L. (2024). Review of reinforcement learning-based control algorithms in artificial pancreas systems for diabetes mellitus management, 2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, pp. 565–572.
  8. Dong, X., Hariri, S., Xue, L., Chen, H., Zhang, M., Pavuluri, S. and Rao, S. (2003). Autonomia: An autonomic computing environment, Conference Proceedings of the 2003 IEEE International Performance, Computing, and Communications Conference, Phoenix, USA, pp. 61–68.
  9. FDA (2023). Content of premarket submissions for device software functions, US Food & Drug Administration, Rockville, https://www.fda.gov/regulatoryinformation/search-fda-guidance-documents/content-premarket-submissions-device-software-functions.
  10. FDA (2025). Cybersecurity in medical devices: Quality system considerations and content of premarket submissions, US Food & Drug Administration, Rockville, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecuritymedical-devices-quality-system-considerations-and-content-premarket-submissions.
  11. Fox, I., Lee, J., Pop-Busui, R. and Wiens, J. (2020). Deep reinforcement learning for closed-loop blood glucose control, Proceedings of Machine Learning Research 2020(5): 508–536.
  12. Hassija, V., Chamola, V., Bajpai, B.C., Naren and Zeadally, S. (2021). Security issues in implantable medical devices: Fact or fiction?, Sustainable Cities and Society 66: 102552.
  13. HGV Research (2024a). Implantable medical device market size, share & trends analysis report by type, by end use, and segment forecasts, 2024–2030, Horizon Grand View Research, San Francisco, https://www.grandviewresearch.com/horizon/outlook/implantable-medical-device-market-size/global .
  14. HGV Research (2024b). Implantable medical devices market analysis report, Horizon Grand View Research, San Francisco, https://www.grandviewresearch.com/industry-analysis/implantable-medical-devices-market-report.
  15. IBM (2024). Cost of a data breach report 2024, IBM, Armonk, https://www.ibm.com/reports/data-breach.
  16. Johnphill, O., Sadiq, A.S., Al-Obeidat, F., Al-Khateeb, H., Taheir, M.A., Kaiwartya, O. and Ali, M. (2023). Self-healing in cyber–physical systems using machine learning: A critical analysis of theories and tools, Future Internet 15(7), Article no. 244.
  17. Kala, R. (2023). Autonomous Mobile Robots: Planning, Navigation, and Simulation, Academic Press, Cambridge, pp. 669–713.
  18. Kegyes, T., Süle, Z. and Abonyi, J. (2021). The applicability of reinforcement learning methods in the development of industry 4.0 applications, Complexity 2021(1): 7179374.
  19. Kingma, D.P. (2014). Adam: A method for stochastic optimization, arXiv: 1412.6980.
  20. Koopman, P. (2003). Elements of the self-healing system problem space, Workshop on Architecting Dependable Systems, Portland, USA, pp. 31–36.
  21. Kuehn, B.M. (2018). Pacemaker recall highlights security concerns for implantable devices, Circulation 138(15): 1597–1598.
  22. Muhammad, G., Alshehri, F., Karray, F., Saddik, A.E., Alsulaiman, M. and Falk, T.H. (2021). A comprehensive survey on multimodal medical signals fusion for smart healthcare systems, Information Fusion 76: 355–375.
  23. NRC (2001). Embedded, Everywhere: A Research Agenda for Networked Systems of Embedded Computers, National Research Council/National Academies Press, Washington, pp. 77–79.
  24. Pirbhulal, S., Zhang, H., Wu, W., Mukhopadhyay, S.C. and Zhang, Y.-T. (2018). Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks, IEEE Transactions on Biomedical Engineering 65(12): 2751–2759.
  25. Pritika, Shanmugam, B. and Azam, S. (2023). Risk assessment of heterogeneous IoMT devices: A review, Technologies 11(1), Article no. 31.
  26. Psaier, H. and Dustdar, S. (2011). A survey on self—healing systems: Approaches and systems, Computing 91(1): 43–73.
  27. Rafajłowicz, W. (2022). Learning Decision Sequences For Repetitive Processes—Selected Algorithms, Springer, Cham.
  28. Rao, A., Carreón, N., Lysecky, R. and Rozenblit, J. (2017). Probabilistic threat detection for risk management in cyber-physical medical systems, IEEE Software 35(1): 38–43.
  29. Rathore, H., Mohamed, A. and Guizani, M. (2020). Deep learning-based security schemes for implantable medical devices, in A. Mohamed (Ed.), Energy Efficiency of Medical Devices and Healthcare Applications, Academic Press, Cambridge, pp. 109–130.
  30. Sallab, A.E., Abdou, M., Perot, E. and Yogamani, S. (2017). Deep reinforcement learning framework for autonomous driving, arXiv: 1704.02532.
  31. Seiger, R., Huber, S. and Schlegel, T. (2015). Proteus: An integrated system for process execution in cyber-physical systems, International Workshop on Business Process Modeling, Development and Support, Stockholm, Sweden, pp. 265–280, DOI: 10.1007/978-3-319-19237-6_17.
  32. Seiger, R., Huber, S. and Schlegel, T. (2018). Toward an execution system for self-healing workflows in cyber-physical systems, Software & Systems Modeling 17(2): 551–572, DOI: 10.1007/s10270-016-0551-z.
  33. Sutton, R. and Barto, A. (2018). Reinforcement Learning: An Introduction, MIT Press, Cambridge.
  34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L. and Polosukhin, I. (2017). Attention is all you need, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, USA.
  35. Wang, G., Liu, X., Ying, Z., Yang, G., Chen, Z., Liu, Z., Zhang, M., Yan, H., Lu, Y., Gao, Y., Xue, K., Li, X. and Chen, Y. (2023). Optimized glycemic control of type 2 diabetes with reinforcement learning: A proof-of-concept trial, Nature Medicine 29(10): 2633–2642, DOI: 10.1038/s41591-023-02552-9.
  36. Yu, K.-H., Beam, A.L. and Kohane, I.S. (2018). Artificial intelligence in healthcare, Nature Biomedical Engineering 2(10): 719–731.
  37. Zabihi, Z., Eftekhari Moghadam, A.M. and Rezvani, M.H. (2023). Reinforcement learning methods for computation offloading: A systematic review, ACM Computing Surveys 56(1): 1–41.
DOI: https://doi.org/10.61822/amcs-2025-0037 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 519 - 533
Submitted on: Jan 14, 2025
Accepted on: Jun 30, 2025
Published on: Sep 8, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Ana S. Carreon-Rascon, Huayu Li, Jerzy W. Rozenblit, Wojciech Rafajłowicz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.