Have a personal or library account? Click to login
Modeling Propagation of Weakly Advantageous Mutations in Cancer Cells Cover

References

  1. Azimzade, Y., Saberi, A.A. and Gatenby, R.A. (2021). Superlinear growth reveals the allee effect in tumors, Physical Review E 103(4): 042405.
  2. Bosque, J.J., Calvo, G.F., Molina-García, D., Pérez-Beteta, J., Vicente, A.M.G. and Pérez-García, V.M. (2023). Metabolic activity grows in human cancers pushed by phenotypic variability, Iscience 26(3): 106118.
  3. Boyko, A.R., Williamson, S.H., Indap, A.R., Degenhardt, J.D., Hernandez, R.D., Lohmueller, K.E., Adams, M.D., Schmidt, S., Sninsky, J.J., Sunyaev, S.R., White, T.J., Nielsen, R., Clark, A.G. and Bustamante, C.D. (2008). Assessing the evolutionary impact of amino acid mutations in the human genome, PLoS Genetics 4(5): e1000083.
  4. Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K.W., Vogelstein, B. and Nowak, M.A. (2010). Accumulation of driver and passenger mutations during tumor progression, Proceedings of the National Academy of Sciences of the United States of America 107(43): 18545–18550.
  5. Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L. and Brú, I. (2003). The universal dynamics of tumor growth, Biophysical Journal 85(5): 2948–2961.
  6. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A.P., Sander, C. and Schultz, N. (2012). The CBIO cancer genomics portal: An open platform for exploring multidimensional cancer genomics data, Cancer Discovery 2(5): 401–404.
  7. Davydov, E.V., Goode, D.L., Sirota, M., Cooper, G.M., Sidow, A. and Batzoglou, S. (2010). Identifying a high fraction of the human genome to be under selective constraint using GERP++, PLoS Computional Biology 6(12): e1001025.
  8. Desai, M.M. and Fisher, D.S. (2007). Beneficial mutation selection balance and the effect of linkage on positive selection, Genetics 176(3): 1759–1798.
  9. Fu, Y., Liu, Z., Lou, S., Bedford, J., Mu, X.J., Yip, K.Y., Khurana, E. and Gerstein, M. (2014). FunSeq2: A framework for prioritizing noncoding regulatory variants in cancer, Genome Biology 15(10): 480.
  10. Gillespie, D.T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics 22(4): 403–434.
  11. Gordo, I. and Charlesworth, B. (2000). The degeneration of asexual haploid populations and the speed of Muller’s Ratchet, Genetics 154(3): 1379–1387.
  12. Greaves, M. and Maley, C.C. (2012). Clonal evolution in cancer, Nature 481(7381): 306–313.
  13. Haigh, J. (1978). The accumulation of deleterious genes in a population—Muller’s ratchet, Theoretical Population Biology 14(2): 251–267.
  14. Heywood, J.S. (2005). An exact form of the breeder’s equation for the evolution of a quantitative trait under natural selection, Evolution 59(11): 2287–2298.
  15. ICGC/TCGA PCWG Consortium (2020). Pan-cancer analysis of whole genomes, Nature 578(7793): 82–93.
  16. Jiao, W., Atwal, G., Polak, P., Karlic, R., Cuppen, E., Danyi, A., de Ridder, J., van Herpen, C., Lolkema, M.P., Steeghs, N., Getz, G., Morris, Q.D. and Stein, L.D. (2020). A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns, Nature Communications 11(1): 728.
  17. Kuehn, C. (2015). Multiple Time Scale Dynamics, Springer, Berlin.
  18. Kühleitner, M., Brunner, N., Nowak, W.-G., Renner-Martin, K. and Scheicher, K. (2019). Best fitting tumor growth models of the von Bertalanffy–Pütter type, BMC Cancer 19(683): 1–11.
  19. Kumar, S., Warrell, J., Li, S., McGillivray, P.D., Meyerson, W., Salichos, L., Harmanci, A., Martinez-Fundichely, A., Chan, C.W.Y., Nielsen, M.M., Lochovsky, L., Zhang, Y., Li, X., Lou, S., Pedersen, J.S., Herrmann, C., Getz, G., Khurana, E. and Gerstein, M.B. (2020). Passenger mutations in more than 2,500 cancer genomes: Overall molecular functional impact and consequences, Cell 180(5): 915–927.e16.
  20. Laird, A.K. (1964). Dynamics of tumour growth, British Journal of Cancer 18(3): 490.
  21. Marchetti, L., Priami, C. and Thanh, V.H. (2017). Simulation Algorithms for Computational Systems Biology, 1st Ed., Springer International Publishing, Cham.
  22. McDonald, T.O., Chakrabarti, S. and Michor, F. (2018). Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution, Nature Genetics 50(12): 1620–1623.
  23. McFarland, C.D., Korolev, K.S., Kryukov, G.V., Sunyaev, S.R. and Mirny, L.A. (2013). Impact of deleterious passenger mutations on cancer progression, Proceedings of the National Academy of Sciences of the United States of America 110(8): 2910–2915.
  24. McFarland, C.D., Mirny, L.A. and Korolev, K.S. (2014). Tug-of-war between driver and passenger mutations in cancer and other adaptive processes, Proceedings of the National Academy of Sciences of the United States of America 111(42): 15138–15143.
  25. Muller, H.J. (1932). Some genetic aspects of sex, The American Naturalist 66(703): 118–138.
  26. Neher, R.A. (2013). Genetic draft, selective interference, and population genetics of rapid adaptation, Annual Review of Ecology, Evolution, and Systematics 44(1): 195–215.
  27. Noorbakhsh, J. and Chuang, J.H. (2017). Uncertainties in tumor allele frequencies limit power to infer evolutionary pressures, Nature Genetics 49(9): 1288–1289.
  28. Park, S.-C. and Krug, J. (2013). Rate of adaptation in sexuals and asexuals: A solvable model of the Fisher–Muller effect, Genetics 195(3): 941–955.
  29. Park, S.-C., Simon, D. and Krug, J. (2010). The speed of evolution in large asexual populations, Journal of Statistical Physics 138: 381–410.
  30. Pérez-García, V. M., Calvo, G.F., Bosque, J.J., León-Triana, O., Jiménez, J., Perez-Beteta, J., Belmonte-Beitia, J., Valiente, M., Zhu, L., García-Gómez, P., Sánchez-Gómez, P., Hernández-San Miguel, E., Hortigüela, R., Azimzade, Y., Molina-García, D., Martinez, Á., Rojas, Á. A., de Mendivil, A.O., Vallette, F., Schucht, P., Murek, M., Pérez-Cano, M., Albillo, D., Honguero Martínez, A.F., Jiménez Londoño, G.A., Arana, E. and García Vicente, A.M. (2020). Universal scaling laws rule explosive growth in human cancers, Nature Physics 16(12): 1232–1237.
  31. Rouzine, I.M., Wakeley, J. and Coffin, J.M. (2003). The solitary wave of asexual evolution, Proceedings of the National Academy of Sciences of the United States of America 100(2): 587–592.
  32. Salvadores, M., Mas-Ponte, D. and Supek, F. (2019). Passenger mutations accurately classify human tumors, PLoS Computational Biology 15(4): e1006953.
  33. Sharp, R.P. (1982). Landscape evolution (a review), Proceedings of the National Academy of Sciences of the United States of America 79(14): 4477–4486.
  34. Talkington, A. and Durrett, R. (2015). Estimating tumor growth rates in vivo, Bulletin of Mathematical Biology 77: 1934–1954.
  35. Tsimring, L.S., Levine, H. and Kessler, D.A. (1996). RNA virus evolution via a fitness-space model, Physical Review Letters 76(23): 4440.
  36. Tung, H.-R. and Durrett, R. (2021). Signatures of neutral evolution in exponentially growing tumors: A theoretical perspective, PLoS Computational Biology 17(2): e1008701.
  37. Uecker, H. and Hermisson, J. (2011). On the fixation process of a beneficial mutation in a variable environment, Genetics 188(4): 915–930.
  38. Vaghi, C., Rodallec, A., Fanciullino, R., Ciccolini, J., Mochel, J.P., Mastri, M., Poignard, C., Ebos, J.M. and Benzekry, S. (2020). Population modeling of tumor growth curves and the reduced gompertz model improve prediction of the age of experimental tumors, PLoS Computational Biology 16(2): e1007178.
  39. Vogelstein, B. and Kinzler, K.W. (2015). The path to cancer—Three strikes and you’re out, New England Journal of Medicine 373(20): 1895–1898.
  40. Wang, H.-Y., Chen, Y., Tong, D., Ling, S., Hu, Z., Tao, Y., Lu, X. and Wu, C.-I. (2018). Is the evolution in tumors Darwinian or non-Darwinian?, National Science Review 5(1): 15–17.
  41. West, J. and Newton, P.K. (2019). Cellular interactions constrain tumor growth, Proceedings of the National Academy of Sciences of the United States of America 116(6): 1918–1923.
  42. Wilks, C., Cline, M. S., Weiler, E., Diehkans, M., Craft, B., Martin, C., Murphy, D., Pierce, H., Black, J., Nelson, D., Litzinger, B., Hatton, T., Maltbie, L., Ainsworth, M., Allen, P., Rosewood, L., Mitchell, E., Smith, B., Warner, J., Groboske, J., Telc, H., Wilson, D., Sanford, B., Schmidt, H., Haussler, D. and Maltbie, D. (2014). The cancer genomics hub (CGHub): Overcoming cancer through the power of torrential data, Database 2014, bau093, DOI: 10.1093/database/bau093.
  43. Williams, M.J., Werner, B., Barnes, C.P., Graham, T.A. and Sottoriva, A. (2016). Identification of neutral tumor evolution across cancer types, Nature Genetics 48(3): 238–244.
  44. WSI (2022). Catalogue of somatic mutations in cancer (cosmic), Wellcome Sanger Institute, Hinxton, http://www.sanger.ac.uk/genetics/CGP/cosmic/.
DOI: https://doi.org/10.61822/amcs-2025-0034 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 479 - 492
Submitted on: Nov 18, 2024
Accepted on: May 6, 2025
Published on: Sep 8, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Andrzej Polański, Mateusz Kania, Jarosław Gil, Wojciech Łabaj, Ewa Lach, Agnieszka Szcęsna, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.