Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K.W., Vogelstein, B. and Nowak, M.A. (2010). Accumulation of driver and passenger mutations during tumor progression, Proceedings of the National Academy of Sciences of the United States of America107(43): 18545–18550.
Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L. and Brú, I. (2003). The universal dynamics of tumor growth, Biophysical Journal85(5): 2948–2961.
Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A.P., Sander, C. and Schultz, N. (2012). The CBIO cancer genomics portal: An open platform for exploring multidimensional cancer genomics data, Cancer Discovery2(5): 401–404.
Davydov, E.V., Goode, D.L., Sirota, M., Cooper, G.M., Sidow, A. and Batzoglou, S. (2010). Identifying a high fraction of the human genome to be under selective constraint using GERP++, PLoS Computional Biology6(12): e1001025.
Gillespie, D.T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics22(4): 403–434.
Heywood, J.S. (2005). An exact form of the breeder’s equation for the evolution of a quantitative trait under natural selection, Evolution59(11): 2287–2298.
Jiao, W., Atwal, G., Polak, P., Karlic, R., Cuppen, E., Danyi, A., de Ridder, J., van Herpen, C., Lolkema, M.P., Steeghs, N., Getz, G., Morris, Q.D. and Stein, L.D. (2020). A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns, Nature Communications11(1): 728.
Kühleitner, M., Brunner, N., Nowak, W.-G., Renner-Martin, K. and Scheicher, K. (2019). Best fitting tumor growth models of the von Bertalanffy–Pütter type, BMC Cancer19(683): 1–11.
Marchetti, L., Priami, C. and Thanh, V.H. (2017). Simulation Algorithms for Computational Systems Biology, 1st Ed., Springer International Publishing, Cham.
McDonald, T.O., Chakrabarti, S. and Michor, F. (2018). Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution, Nature Genetics50(12): 1620–1623.
McFarland, C.D., Korolev, K.S., Kryukov, G.V., Sunyaev, S.R. and Mirny, L.A. (2013). Impact of deleterious passenger mutations on cancer progression, Proceedings of the National Academy of Sciences of the United States of America110(8): 2910–2915.
McFarland, C.D., Mirny, L.A. and Korolev, K.S. (2014). Tug-of-war between driver and passenger mutations in cancer and other adaptive processes, Proceedings of the National Academy of Sciences of the United States of America111(42): 15138–15143.
Neher, R.A. (2013). Genetic draft, selective interference, and population genetics of rapid adaptation, Annual Review of Ecology, Evolution, and Systematics44(1): 195–215.
Noorbakhsh, J. and Chuang, J.H. (2017). Uncertainties in tumor allele frequencies limit power to infer evolutionary pressures, Nature Genetics49(9): 1288–1289.
Pérez-García, V. M., Calvo, G.F., Bosque, J.J., León-Triana, O., Jiménez, J., Perez-Beteta, J., Belmonte-Beitia, J., Valiente, M., Zhu, L., García-Gómez, P., Sánchez-Gómez, P., Hernández-San Miguel, E., Hortigüela, R., Azimzade, Y., Molina-García, D., Martinez, Á., Rojas, Á. A., de Mendivil, A.O., Vallette, F., Schucht, P., Murek, M., Pérez-Cano, M., Albillo, D., Honguero Martínez, A.F., Jiménez Londoño, G.A., Arana, E. and García Vicente, A.M. (2020). Universal scaling laws rule explosive growth in human cancers, Nature Physics16(12): 1232–1237.
Rouzine, I.M., Wakeley, J. and Coffin, J.M. (2003). The solitary wave of asexual evolution, Proceedings of the National Academy of Sciences of the United States of America100(2): 587–592.
Tung, H.-R. and Durrett, R. (2021). Signatures of neutral evolution in exponentially growing tumors: A theoretical perspective, PLoS Computational Biology17(2): e1008701.
Vaghi, C., Rodallec, A., Fanciullino, R., Ciccolini, J., Mochel, J.P., Mastri, M., Poignard, C., Ebos, J.M. and Benzekry, S. (2020). Population modeling of tumor growth curves and the reduced gompertz model improve prediction of the age of experimental tumors, PLoS Computational Biology16(2): e1007178.
Wang, H.-Y., Chen, Y., Tong, D., Ling, S., Hu, Z., Tao, Y., Lu, X. and Wu, C.-I. (2018). Is the evolution in tumors Darwinian or non-Darwinian?, National Science Review5(1): 15–17.
West, J. and Newton, P.K. (2019). Cellular interactions constrain tumor growth, Proceedings of the National Academy of Sciences of the United States of America116(6): 1918–1923.
Wilks, C., Cline, M. S., Weiler, E., Diehkans, M., Craft, B., Martin, C., Murphy, D., Pierce, H., Black, J., Nelson, D., Litzinger, B., Hatton, T., Maltbie, L., Ainsworth, M., Allen, P., Rosewood, L., Mitchell, E., Smith, B., Warner, J., Groboske, J., Telc, H., Wilson, D., Sanford, B., Schmidt, H., Haussler, D. and Maltbie, D. (2014). The cancer genomics hub (CGHub): Overcoming cancer through the power of torrential data, Database2014, bau093, DOI: 10.1093/database/bau093.
Williams, M.J., Werner, B., Barnes, C.P., Graham, T.A. and Sottoriva, A. (2016). Identification of neutral tumor evolution across cancer types, Nature Genetics48(3): 238–244.