Have a personal or library account? Click to login
Doppler Shift Determination Methods Dedicated to MBFSK Modulation Cover

References

  1. Baldone, C., Galioto, G.E., Croce, D., Tinnirello, I. and Petrioli, C. (2020). Doppler estimation and correction for JANUS underwater communications, GLOBECOM 2020 IEEEGlobal Communications Conference, Taipei, Taiwan, pp. 1–6.
  2. Bjørnø, L. and Buckingham, M. (2017). General characteristics of the underwater environment, in T.H. Neighbors and D. Bradley (Eds), Applied Underwater Acoustics, Elsevier, Amsterdam, pp. 1–84.
  3. Czapiewska, A., Luksza, A., Studanski, R. and Zak, A. (2022). Analysis of impulse responses measured in motion in a towing tank, Electronics 11(22), Article no. 3819.
  4. Czapiewska, A., Łuksza, A., Studański, R., Wojewódka, L. and Żak, A. (2024a). Comparison of Doppler effect estimation methods for MFSK transmission in multipath hydroacoustic channel, IEEE Access 12: 49976–49986.
  5. Czapiewska, A., Łuksza, A., Studański, R., Wojewódka, L. and Żak, A. (2024b). Evaluating the effectiveness of Doppler frequency shift determination using pilots in broadband transmission, International Journal of Electronics and Telecommunications 70(4): 797–803.
  6. Deguchi, M., Kida, Y. and Shimura, T. (2022). Suppression of effects of Doppler shifts of multipath signals in underwater acoustic communication, Acoustical Science and Technology 43(1): 10–21.
  7. Diamant, R., Feuer, A. and Lampe, L. (2012). Choosing the right signal: Doppler shift estimation for underwater acoustic signals, Proceedings of the 7th International Conference on Underwater Networks & Systems, New York, USA, pp. 1–8.
  8. Eynard, G. and Laot, C. (2008). Blind Doppler compensation scheme for single carrier digital underwater communications, OCEANS 2008, Quebec City, Canada, pp. 1–5.
  9. Grami, A. (2016). Signals, systems, and spectral analysis, in A. Grami (Ed.), Introduction to Digital Communications, Academic Press, Boston, pp. 41–150.
  10. Halliday, D., Resnick, R. and Walker, J. (2013). Fundamentals of Physics, Extended, Wiley, Hoboken.
  11. Jin, Q., Wong, K.M. and Luo, Z.-Q. (1995). The estimation of time delay and Doppler stretch of wideband signals, IEEE Transactions on Signal Processing 43(4): 904–916.
  12. Johnson, M., Freitag, L. and Stojanovic, M. (1997). Improved Doppler tracking and correction for underwater acoustic communications, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, pp. 575–578.
  13. Li, B., Zheng, S. and Tong, F. (2019). Bit-error rate based Doppler estimation for shallow water acoustic OFDM communication, Ocean Engineering 182: 203–210.
  14. Li, B., Zhou, S., Stojanovic, M., Freitag, L. and Willett, P. (2008). Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts, IEEE Journal of Oceanic Engineering 33(2): 198–209.
  15. Liu, Y., Zhao, Y., Gerstoft, P., Zhou, F., Qiao, G. and Yin, J. (2023). Deep transfer learning-based variable Doppler underwater acoustic communications, The Journal of the Acoustical Society of America 154(1): 232–244.
  16. Ma, L., Jia, H., Liu, S. and Khan, I.U. (2020). Low-complexity Doppler compensation algorithm for underwater acoustic OFDM systems with nonuniform Doppler shifts, IEEE Communications Letters 24(9): 2051–2054.
  17. Mason, S.F., Berger, C.R., Zhou, S. and Willett, P. (2008). Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication, IEEE Journal on Selected Areas in Communications 26(9): 1638–1649.
  18. Misiurewicz, J., Bruliński, K., Klembowski, W. and Kulpa, K. (2021). Multipath propagation of acoustic signal in a swimming pool, 2021 Signal Processing Symposium (SPSympo), Łódź, Poland, pp. 197–201.
  19. Mizeraczyk, J., Studanski, R., Zak, A. and Czapiewska, A. (2021). A method for underwater wireless data transmission in a hydroacoustic channel under NLOS conditions, Sensors 21(23), Article no. 7825.
  20. Nguyen, V.D., Thi, H. L.N., Nguyen, Q.K. and Nguyen, T.H. (2022). Low complexity non-uniform FFT for Doppler compensation in OFDM-based underwater acoustic communication systems, IEEE Access 10: 82788–82798.
  21. Ostrowski, Z., Salamon, R., Kochańska, I. and Marszal, J. (2020). Underwater navigation system based on Doppler shift—Measurements and error estimations, Polish Maritime Research 27(1): 180–187.
  22. Perrine, K.A., Nieman, K.F., Henderson, T.L., Lent, K.H., Brudner, T.J. and Evans, B.L. (2010). Doppler estimation and correction for shallow underwater acoustic communications, 2010 Conference Record of the 44th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, pp. 746–750.
  23. Sharif, B., Neasham, J., Hinton, O. and Adams, A. (1999). Doppler compensation for underwater acoustic communications, MTS/IEEE Oceans’99 Conference and Exhibition: Riding the Crest into the 21st Century, Seattle, USA, pp. 216–221.
  24. Sharif, B., Neasham, J., Hinton, O. and Adams, A. (2000). A computationally efficient Doppler compensation system for underwater acoustic communications, IEEE Journal of Oceanic Engineering 25(1): 52–61.
  25. Sun, D., Hong, X. and Cui, H. (2022). A Kalman-based Doppler tracking algorithm for underwater acoustic spread spectrum communications, Applied Acoustics 185: 108374.
  26. Sun, D., Hong, X., Cui, H. and Liu, L. (2020). A symbol-based passband Doppler tracking and compensation algorithm for underwater acoustic DSSS communications, Journal of Communications and Information Networks 5(2): 168–176.
  27. Sun, D., Wu, J., Hong, X., Liu, C., Cui, H. and Si, B. (2023). Iterative double-differential direct-sequence spread spectrum reception in underwater acoustic channel with time-varying Doppler shifts, Journal of the Acoustical Society of America 153(2): 1027–1041.
  28. Talarczyk, T. (2023). A dynamic submerging motion model of the hybrid-propelled unmanned underwater vehicle: Simulation and experimental verification, International Journal of Applied Mathematics and Computer Science 33(2): 207–218, DOI: 10.34768/amcs-2023-0016.
  29. Wada, T., Suzuki, T., Yamada, H. and Nakagawa, S. (2016). An underwater acoustic 64QAM OFDM communication system with robust Doppler compensation, OCEANS 2016, Monterey, USA, pp. 1–4.
  30. Wei, R.,Ma, X., Zhao, S. and Yan, S. (2020). Doppler estimation based on dual-HFM signal and speed spectrum scanning, IEEE Signal Processing Letters 27: 1740–1744.
  31. Zhao, S., Yan, S. and Xu, L. (2019). Doppler estimation based on HFM signal for underwater acoustic time-varying multipath channel, 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, pp. 1–6.
DOI: https://doi.org/10.61822/amcs-2025-0033 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 467 - 477
Submitted on: Sep 13, 2024
|
Accepted on: Mar 10, 2025
|
Published on: Sep 8, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Agnieszka Czapiewska, Andrzej Łuksza, Jan H. Schmidt, Ryszard Studański, Łukasz Wojewódka, Andrzej Żakc, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.