Abonyi, J. and Babuska, R. (2000). Local and global identification and interpretation of parameters in Takagi–Sugeno fuzzy models, 9th IEEE International Conference on Fuzzy Systems, San Antonio, USA, pp. 835–840.
Alexiev, K. and Georgieva, O. (2004). Improved fuzzy clustering for identification of Takagi–Sugeno model, Intelligent Systems—2nd International IEEE Conference, Varna, Bulgaria, pp. 213–218.
Bolder, J., Kleinendorst, S. and Oomen, T. (2018). Data-driven multivariable ILC: Enhanced performance by eliminating L and Q filters, International Journal of Robust and Nonlinear Control28(12, SI): 3728–3751.
Deng, S. and Yang, L. (2016). Reliable control design of discrete-time Takagi–Sugeno fuzzy systems with actuator faults, Neurocomputing173(3): 1784–1788.
Dong, J. (2023). Robust data-driven iterative learning control for linear-time-invariant and Hammerstein–Wiener systems, IEEE Transactions on Cybernetics53(2): 1144–1157.
Doyle, J., Glover, K., Khargonekar, P. and Francis, B. (1989). State-space solutions to standard H2 and H∞ control-problems, IEEE Transactions on Automatic Control34(8): 831–847.
Gao, Z.-F., Lin, J.-X. and Cao, T. (2015). Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control, Automation and Systems13(3): 672–679.
Hedrea, E.-L., Precup, R.-E., Bojan-Dragos, C.-A., Hedrea, C., Ples, D. and Popovici, D. (2019). Cascade control solutions for level control of vertical three tank systems, IEEE 13th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, pp. 352–357.
Janssens, P., Pipeleers, G. and Swevers, J. (2013). A data-driven constrained norm-optimal iterative learning control framework for LTI systems, IEEE Transactions on Control Systems Technology21(2): 546–551.
Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science32(2): 171–183, DOI: 10.34768/amcs-2022-0013.
Leal-Leal, I.E. and Alcorta-Garcia, E. (2023). An efficient fault tolerant control scheme for Euler–Lagrange systems, International Journal of Applied Mathematics and Computer Science33(2): 219–228, DOI: 10.34768/amcs-2023-0017.
Li, X., Xu, J.-X. and Huang, D. (2014). An iterative learning control approach for linear systems with randomly varying trial lengths, IEEE Transactions on Automatic Control59(7): 1954–1960.
Liu, G. and Hou, Z. (2024). Adaptive iterative learning fault-tolerant control for state constrained nonlinear systems with randomly varying iteration lengths, IEEE Transactions on Neural Networks and Learning Systems35(2): 1735–1749.
Pazera, M., Sulikowski, B., Kukurowski, N., Witczak, M. and Aubrun, C. (2021). A fault-tolerant iterative learning control for Takagi–Sugeno fuzzy systems, 5th Conference on Control and Fault Tolerant Systems, SysTol 2021, St. Rafael, France, pp. 267–272.
Paszke, W., Rogers, E., Gałkowski, K. and Cai, Z. (2013). Robust finite frequency range iterative learning control design and experimental verification, Control Engineering Practice21(10): 1310–1320.
Rogers, E., Gałkowski, K. and Owens, D.H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes, Springer, Berlin/Heidelberg.
Saif, M. and Guan, Y. (1993). A new approach to robust fault-detection and identification, IEEE Transactions On Aerospace And Electronic Systems29(3): 685–695.
Sornmo, O., Bernhardsson, B., Kroling, O., Gunnarsson, P. and Tenghamn, H. (2016). Frequency-domain iterative learning control of a marine vibrator, Control Engineering Practice47: 70–80.
Sulikowski, B., Galkowski, K., Rogers, E. and Kummert, A. (2020). Robust iterative learning control for ladder circuits with mixed uncertainties, 16th International Conference on Control, Automation, Robotics and Vision, ICARCV 2020, Shenzhen, China, pp. 932–937.
Tao, H., Zheng, J., Wei, J., Paszke, W., Rogers, E. and Stojanovic, V. (2023). Repetitive process based indirect-type iterative learning control for batch processes with model uncertainty and input delay, Journal of Process Control132: 1–12.
Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics15(1): 116–132.
Wang, J.-S. and Yang, G.-H. (2016). Data-driven output-feedback fault-tolerant compensation control for digital PID control systems with unknown dynamics, IEEE Transactions on Industrial Electronics63(11): 7029–7039.
Wang, L., Li, B., Yu, J., Zhang, R. and Gao, F. (2018). Design of fuzzy iterative learning fault-tolerant control for batch processes with time-varying delays, Optimal Control Applications and Methods39(6): 1887–1903.
Wang, Y. and Wang, Z. (2022). Data-driven model-free adaptive fault-tolerant control for a class of discrete-time systems, IEEE Transactions on Circuits and Systems II: Express Briefs69(1): 154–158.
Witczak, M. (2007). Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems. From Analytical to Soft Computing Approaches, Springer, Berlin.
Witczak, M., Pazera, M., Majdzik, P. and Matysiak, R. (2024). Development of a guaranteed minimum detectable sensor fault diagnosis scheme, International Journal of Applied Mathematics and Computer Science34(3): 409–423, DOI:10.61822/amcs-2024-0029.
Xu, T., Yu, H., Yu, J. and Meng, X. (2020). Adaptive disturbance attenuation control of two tank liquid level system with uncertain parameters based on port-controlled Hamiltonian, IEEE Access8: 47384–47392.
Yu, X., Hou, Z., Polycarpou, M.M. and Duan, L. (2021). Data-driven iterative learning control for nonlinear discrete-time MIMO systems, IEEE Transactions on Neural Networks and Learning Systems32(3): 1136–1148.
Zemouche, A., Boutayeb, M. and Bara, G.I. (2008). Observers for a class of Lipschitz systems with extension to H∞ performance analysis, Systems & Control Letters57(1): 18–27.
Zhang, J., Qian, K., Luo, H., Liu, Y., Qiao, X., Xu, X. and Tian, J. (2025). Process monitoring for tower pumping units under variable operational conditions: From an integrated multitasking perspective, Control Engineering Practice156: 106229.