Have a personal or library account? Click to login
An Iterative Learning Control Approach to Sensor Fault–Tolerance in Takagi–Sugeno Systems Cover

An Iterative Learning Control Approach to Sensor Fault–Tolerance in Takagi–Sugeno Systems

Open Access
|Sep 2025

References

  1. Abonyi, J. and Babuska, R. (2000). Local and global identification and interpretation of parameters in Takagi–Sugeno fuzzy models, 9th IEEE International Conference on Fuzzy Systems, San Antonio, USA, pp. 835–840.
  2. Alexiev, K. and Georgieva, O. (2004). Improved fuzzy clustering for identification of Takagi–Sugeno model, Intelligent Systems—2nd International IEEE Conference, Varna, Bulgaria, pp. 213–218.
  3. Arimoto, S., Kawamura, S. and Miyazaki, F. (1984). Bettering operation of robots by learning, Journal of Robotic Systems 1(2): 123–140.
  4. Bolder, J., Kleinendorst, S. and Oomen, T. (2018). Data-driven multivariable ILC: Enhanced performance by eliminating L and Q filters, International Journal of Robust and Nonlinear Control 28(12, SI): 3728–3751.
  5. Bristow, D.A., Tharayil, M. and Alleyne, A.G. (2006). A survey of iterative learning control, IEEE Control Systems Magazine 26(3): 96–114.
  6. de Oliveira, M.C., Bernussou, J. and Geromel, J.C. (1999). A new discrete-time robust stability condition, Systems & Control Letters 37(4): 261–265.
  7. Deng, S. and Yang, L. (2016). Reliable control design of discrete-time Takagi–Sugeno fuzzy systems with actuator faults, Neurocomputing 173(3): 1784–1788.
  8. Dong, J. (2023). Robust data-driven iterative learning control for linear-time-invariant and Hammerstein–Wiener systems, IEEE Transactions on Cybernetics 53(2): 1144–1157.
  9. Doyle, J., Glover, K., Khargonekar, P. and Francis, B. (1989). State-space solutions to standard H2 and H control-problems, IEEE Transactions on Automatic Control 34(8): 831–847.
  10. Gao, Z.-F., Lin, J.-X. and Cao, T. (2015). Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control, Automation and Systems 13(3): 672–679.
  11. Hedrea, E.-L., Precup, R.-E., Bojan-Dragos, C.-A., Hedrea, C., Ples, D. and Popovici, D. (2019). Cascade control solutions for level control of vertical three tank systems, IEEE 13th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, pp. 352–357.
  12. Janssens, P., Pipeleers, G. and Swevers, J. (2013). A data-driven constrained norm-optimal iterative learning control framework for LTI systems, IEEE Transactions on Control Systems Technology 21(2): 546–551.
  13. Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171–183, DOI: 10.34768/amcs-2022-0013.
  14. Leal-Leal, I.E. and Alcorta-Garcia, E. (2023). An efficient fault tolerant control scheme for Euler–Lagrange systems, International Journal of Applied Mathematics and Computer Science 33(2): 219–228, DOI: 10.34768/amcs-2023-0017.
  15. Li, H. and Fu, M. (1997). A linear matrix inequality approach to robust h filtering, IEEE Trans. Signal Processing 45(9): 2338–2350.
  16. Li, X., Xu, J.-X. and Huang, D. (2014). An iterative learning control approach for linear systems with randomly varying trial lengths, IEEE Transactions on Automatic Control 59(7): 1954–1960.
  17. Liu, G. and Hou, Z. (2024). Adaptive iterative learning fault-tolerant control for state constrained nonlinear systems with randomly varying iteration lengths, IEEE Transactions on Neural Networks and Learning Systems 35(2): 1735–1749.
  18. Liu, X., Ma, L., Kong, X. and Lee, K.Y. (2022). An efficient iterative learning predictive functional control for nonlinear batch processes, IEEE Transactions on Cybernetics 52(6): 4147–4160.
  19. Pazera, M., Sulikowski, B., Kukurowski, N., Witczak, M. and Aubrun, C. (2021). A fault-tolerant iterative learning control for Takagi–Sugeno fuzzy systems, 5th Conference on Control and Fault Tolerant Systems, SysTol 2021, St. Rafael, France, pp. 267–272.
  20. Pan, S.J. and Yang, Q. (2010). A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering 22(10): 1345–1359.
  21. Paszke, W., Rogers, E., Gałkowski, K. and Cai, Z. (2013). Robust finite frequency range iterative learning control design and experimental verification, Control Engineering Practice 21(10): 1310–1320.
  22. Rogers, E., Chu, B., Freeman, C.T. and Lewin, P.L. (2023). Iterative Learning Control Algorithms and Experimental Benchmarking, Wiley, Hoboken.
  23. Rogers, E., Gałkowski, K. and Owens, D.H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes, Springer, Berlin/Heidelberg.
  24. Saif, M. and Guan, Y. (1993). A new approach to robust fault-detection and identification, IEEE Transactions On Aerospace And Electronic Systems 29(3): 685–695.
  25. Shen, D. (2018). Iterative learning control with incomplete information: A survey, IEEE-CAA Journal of Automatica Sinica 5(5): 885–901.
  26. Sornmo, O., Bernhardsson, B., Kroling, O., Gunnarsson, P. and Tenghamn, H. (2016). Frequency-domain iterative learning control of a marine vibrator, Control Engineering Practice 47: 70–80.
  27. Sulikowski, B., Galkowski, K., Rogers, E. and Kummert, A. (2020). Robust iterative learning control for ladder circuits with mixed uncertainties, 16th International Conference on Control, Automation, Robotics and Vision, ICARCV 2020, Shenzhen, China, pp. 932–937.
  28. Tao, H., Zheng, J., Wei, J., Paszke, W., Rogers, E. and Stojanovic, V. (2023). Repetitive process based indirect-type iterative learning control for batch processes with model uncertainty and input delay, Journal of Process Control 132: 1–12.
  29. Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.
  30. Wang, J.-S. and Yang, G.-H. (2016). Data-driven output-feedback fault-tolerant compensation control for digital PID control systems with unknown dynamics, IEEE Transactions on Industrial Electronics 63(11): 7029–7039.
  31. Wang, L., Li, B., Yu, J., Zhang, R. and Gao, F. (2018). Design of fuzzy iterative learning fault-tolerant control for batch processes with time-varying delays, Optimal Control Applications and Methods 39(6): 1887–1903.
  32. Wang, Y. and Wang, Z. (2022). Data-driven model-free adaptive fault-tolerant control for a class of discrete-time systems, IEEE Transactions on Circuits and Systems II: Express Briefs 69(1): 154–158.
  33. Witczak, M. (2007). Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems. From Analytical to Soft Computing Approaches, Springer, Berlin.
  34. Witczak, M., Pazera, M., Majdzik, P. and Matysiak, R. (2024). Development of a guaranteed minimum detectable sensor fault diagnosis scheme, International Journal of Applied Mathematics and Computer Science 34(3): 409–423, DOI:10.61822/amcs-2024-0029.
  35. Xu, T., Yu, H., Yu, J. and Meng, X. (2020). Adaptive disturbance attenuation control of two tank liquid level system with uncertain parameters based on port-controlled Hamiltonian, IEEE Access 8: 47384–47392.
  36. Yu, X., Hou, Z., Polycarpou, M.M. and Duan, L. (2021). Data-driven iterative learning control for nonlinear discrete-time MIMO systems, IEEE Transactions on Neural Networks and Learning Systems 32(3): 1136–1148.
  37. Zemouche, A., Boutayeb, M. and Bara, G.I. (2008). Observers for a class of Lipschitz systems with extension to H performance analysis, Systems & Control Letters 57(1): 18–27.
  38. Zhang, J., Qian, K., Luo, H., Liu, Y., Qiao, X., Xu, X. and Tian, J. (2025). Process monitoring for tower pumping units under variable operational conditions: From an integrated multitasking perspective, Control Engineering Practice 156: 106229.
DOI: https://doi.org/10.61822/amcs-2025-0031 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 443 - 454
Submitted on: Nov 13, 2024
Accepted on: Jul 1, 2025
Published on: Sep 8, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marcin Pazera, Bartłomiej Sulikowski, Marcin Witczak, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.