Have a personal or library account? Click to login
Exploring Data Preparation Strategies: A Comparative Analysis of Vision Transformer and ConvNext Architectures in Breast Cancer Histopathology Classification Cover

Exploring Data Preparation Strategies: A Comparative Analysis of Vision Transformer and ConvNext Architectures in Breast Cancer Histopathology Classification

Open Access
|Jun 2025

References

  1. Ara, R. K., Matiolanski, A., Grega, M., Dziech, A. and Baran, R. (2023). Efficient face detection based crowd density estimation using convolutional neural networks and an improved sliding window strategy, International Journal of Applied Mathematics and Computer Science 33(1): 7–20,k DOI: 10.34768/amcs-2023-0001.
  2. Campanella, G., Hanna, M.G., Geneslaw, L.,Miraflor, A., Silva, V.W.K., Busam, K.J., Brogi, E., Reuter, V.E., Klimstra, D.S. and Fuchs, T.J. (2019). Clinical-grade computational pathology using weakly supervised deep learning on whole slide images, Nature Medicine 25(8): 1301–1309, DOI: 10.1038/s41591-019-0508-1.
  3. Deininger, L., Stimpel, B., Yuce, A., Abbasi-Sureshjani, S., Schönenberger, S., Ocampo, P., Korski, K. and Gaire, F. (2022). A comparative study between vision transformers and cnns in digital pathology, arXiv: 2206.00389.
  4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N. (2021). An image is worth 16 × 16 words: Transformers for image recognition at scale, Proceedings of the 9th International Conference on Learning Representations, ICLR 2021, Vienna, Austria.
  5. Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., Jégou, H. and Douze, M. (2021). LeViT: A vision transformer in ConvNET’s clothing for faster inference, Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, Canada, pp. 12259–12269, DOI: 10.1109/ICCV48922.2021.01204.
  6. He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, pp. 770–778, DOI: 10.1109/CVPR.2016.90.
  7. Huang, G., Liu, Z., van der Maaten, L. and Weinberger, K.Q. (2017). Densely connected convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, pp. 4700–4708, DOI: 10.1109/CVPR.2017.243.
  8. Komura, D. and Ishikawa, S. (2018). Machine learning methods for histopathological image analysis, Computational and Structural Biotechnology Journal 16: 34–42, DOI: 10.1016/j.csbj.2018.01.001.
  9. Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks, in F. Pereira et al. (Eds), Proceedings of the 26th Annual Conference on Neural Information Processing Systems, NIPS 2012, Curran Associates, Inc., Lake Tahoe, NV, USA, pp. 1106–1114.
  10. Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T. and Xie, S. (2022). A ConvNet for the 2020s, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, pp. 11966–11976, DOI: 10.1109/CVPR52688.2022.01167.
  11. Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition, Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA. DOI: 10.48550/arXiv.1409.1556.
  12. Spanhol, F.A., Oliveira, L.S., Petitjean, C. and Heutte, L. (2016). A dataset for breast cancer histopathological image classification, IEEE Transactions on Biomedical Engineering 63(7): 1455–1462, DOI: 10.1109/TBME.2015.2496264.
  13. Takahashi, S., Sakaguchi, Y., Kouno, N., Takasawa, K., Ishizu, K., Akagi, Y., Aoyama, R., Teraya, N., Bolatkan, A., Shinkai, N., Machino, H., Kobayashi, K., Asada, K., Komatsu, M., Kaneko, S., Sugiyama, M. and Hamamoto, R. (2024). Comparison of vision transformers and convolutional neural networks in medical image analysis: A systematic review, Journal of Medical Systems 48(84): 1–22, DOI: 10.1007/s10916-024-02105-8.
  14. Tellez, D., Litjens, G., Bándi, P., Bulten, W., Maksai, A., Ciompi, F. and van der Laak, J. (2019). Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology, Medical Image Analysis 58: 101544, DOI: 10.1016/J.MEDIA.2019.101544.
  15. Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Huang, J., Yang, W. and Han, X. (2021). Transpath: Transformer-based self-supervised learning for histopathological image classification, in M. de Bruijne et al. (Eds), Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021, Springer, Cham, pp. 186–195. DOI: 10.1007/978-3-030-87237-3_18.
DOI: https://doi.org/10.61822/amcs-2025-0023 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 329 - 339
Submitted on: Jan 10, 2025
Accepted on: Mar 27, 2025
Published on: Jun 24, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mikołaj Kaczmarek, Marek Kowal, Józef Korbicz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.