Have a personal or library account? Click to login
Exact and Approximate Solutions of A Fractional Diffusion Problem with Fixed Space Memory Length Cover

Exact and Approximate Solutions of A Fractional Diffusion Problem with Fixed Space Memory Length

Open Access
|Jun 2025

References

  1. Alaroud, M., Aljarrah, H., Alomari, A.-K., Ishak, A. and Darus, M. (2024). Explicit and approximate series solutions for nonlinear fractional wave-like differential equations with variable coefficients, Partial Differential Equations in Applied Mathematics 10: 100680.
  2. Bekir, A., Aksoy, E. and Cevikel, A.C. (2015). Exact solutions of nonlinear time fractional partial differential equations by sub-equation method, Mathematical Methods in the Applied Sciences 38(13): 2779–2784.
  3. Blaszczyk, T., Bekus, K., Szajek, K. and Sumelka, W. (2021). On numerical approximation of the Riesz–Caputo operator with the fixed/short memory length, Journal of King Saud University-Science 33(1): 101220.
  4. Chechkin, A.V., Seno, F., Metzler, R. and Sokolov, I.M. (2017). Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities, Physical Review X 7: 021002.
  5. Ciesielski, M. and Leszczynski, J. (2006). Numerical treatment of an initial-boundary value problem for fractional partial differential equations, Signal Processing 86(10): 2619–2631.
  6. Das, S. (2009). Analytical solution of a fractional diffusion equation by variational iteration method, Computers & Mathematics with Applications 57(3): 483–487.
  7. dos Santos, M.A. (2019). Analytic approaches of the anomalous diffusion: A review, Chaos, Solitons & Fractals 124: 86–96.
  8. Echchaffani, Z., Aberqi, A., Karite, T. and Leiva, H. (2024). The existence of mild solutions and approximate controllability for nonlinear fractional neutral evolution systems, International Journal of Applied Mathematics and Computer Science 34(1): 15–2.
  9. Elkott, I., Latif, M.S.A., El-Kalla, I.L. and Kader, A.H.A. (2023). Some closed form series solutions for the time-fractional diffusion-wave equation in polar coordinates with a generalized Caputo fractional derivative, Journal of Applied Mathematics and Computational Mechanics 22(2): 5–14.
  10. Evangelista, L.R. and Lenzi, E.K. (2018). Fractional Diffusion Equations and Anomalous Diffusion, Cambridge University Press, Cambridge.
  11. Gu, X.-M., Sun, H.-W., Zhao, Y.-L. and Zheng, X. (2021). An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Applied Mathematics Letters 120: 107270.
  12. Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
  13. Klimek, M. and Blaszczyk, T. (2024). Exact solutions of fractional oscillator eigenfunction problem with fixed memory length, Journal of Applied Mathematics and Computational Mechanics 23(1): 45–58.
  14. Ledesma, C.T., Baca, J.V. and Sousa, J.V.d.C. (2022). Properties of fractional operators with fixed memory length, Mathematical Methods in the Applied Sciences 45(1): 49–76.
  15. Ledesma, C.T., Rodríguez, J.A. and Sousa, J.V.d.C. (2023). Differential equations with fractional derivatives with fixed memory length, Rendiconti del Circolo Matematico di Palermo Series 2 72(1): 635–653.
  16. Lu, Z. and Fan, W. (2025). A fast algorithm for multi-term time-space fractional diffusion equation with fractional boundary condition, Numerical Algorithms 98: 1171–1194.
  17. Magin, R.L. (2006). Fractional Calculus in Bioengineering, Begell House Publisher, Danbury.
  18. Magin, R.L., Abdullah, O., Baleanu, D. and Zhou, X.J. (2008). Anomalous diffusion expressed through fractional order differential operators in the bloch-torrey equation, Journal of Magnetic Resonance 190(2): 255–270.
  19. Malinowska, A.B., Odzijewicz, T. and Poskrobko, A. (2023). Applications of the fractional Sturm–Liouville difference problem to the fractional diffusion difference equation, International Journal of Applied Mathematics and Computer Science 33(3): 349–359, DOI: 10.34768/amcs-2023-0025.
  20. Meerschaert, M.M. and Tadjeran, C. (2004). Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics 172(1): 65–77.
  21. Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339(1): 1–77.
  22. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego.
  23. Stempin, P., Pawlak, T.P. and Sumelka, W. (2023). Formulation of non-local space-fractional plate model and validation for composite micro-plates, International Journal of Engineering Science 192: 103932.
  24. Sumelka, W., Blaszczyk, T. and Liebold, C. (2015). Fractional euler-bernoulli beams: Theory, numerical study and experimental validation, European Journal of Mechanics A/Solids 54: 243–251.
  25. Sumelka, W., Łuczak, B., Gajewski, T. and Voyiadjis, G.Z. (2020). Modelling of AAA in the framework of time-fractional damage hyperelasticity, International Journal of Solids and Structures 206: 30–42.
  26. Tian, W., Zhou, H. and Deng, W. (2015). A class of second order difference approximations for solving space fractional diffusion equations, Mathematics of Computation 84(294): 1703–1727.
  27. Tsallis, C. and Lenzi, E. (2002). Anomalous diffusion: Nonlinear fractional Fokker–Planck equation, Chemical Physics 284(1): 341–347.
  28. Voyiadjis, G., Akbari, E., Łuczak, B. and Sumelka, W. (2023). Towards determining an engineering stress-strain curve and damage of the cylindrical lithium-ion battery using the cylindrical indentation test, Batteries 9(4): 233.
  29. Wang, H. and Du, N. (2013). A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations, Journal of Computational Physics 240: 49–57.
  30. Wei, Y., Chen, Y., Cheng, S. and Wang, Y. (2017). A note on short memory principle of fractional calculus, Fractional Calculus and Applied Analysis 20(6): 1382–1404.
  31. Yang, X., Wu, L. and Zhang, H. (2023). A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Applied Mathematics and Computation 457: 128192.
  32. Zaslavsky, G.M. (2000). Chaos, fractional kinetics, and anomalous transport, Physics Reports 371(6): 461–580.
  33. Zhuang, P., Liu, F., Turner, I. and Anh, V. (2016). Galerkin finite element method and error analysis for the fractional cable equation, Numerical Algorithms 72: 447–466.
DOI: https://doi.org/10.61822/amcs-2025-0022 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 311 - 328
Submitted on: Aug 5, 2024
Accepted on: Jan 28, 2025
Published on: Jun 24, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Malgorzata Klimek, Tomasz Blaszczyk, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.