Have a personal or library account? Click to login
A Projection Strategy for Improving the Preconditioner in the LOBPCG Cover

A Projection Strategy for Improving the Preconditioner in the LOBPCG

By: Tailai Ma,  Shuli Sun,  Fangyi Zheng and  Pu Chen  
Open Access
|Jun 2025

References

  1. Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. et al. (2022). PETSc users manual, https://petsc.org/release/docs/manual.
  2. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F. and Zhang, H. (2001). PETSc, http://www.mcs.anl.gov/petsc.
  3. Bathe, K.-J. and Wilson, E.L. (1973). Solution methods for eigenvalue problems in structural mechanics, International Journal for Numerical Methods in Engineering 6(2): 213–226.
  4. Bennighof, J.K. and Lehoucq, R.B. (2004). An automated multilevel substructuring method for eigenspace computation in linear elastodynamics, SIAM Journal on Scientific Computing 25(6): 2084–2106, DOI: 10.1137/S1064827502400650.
  5. Collignon, T. and Gijzen, M.V. (2010). Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids, International Journal of Applied Mathematics and Computer Science 20(1): 109–121, DOI: 10.2478/v10006-010-0008-4.
  6. Duersch, J.A., Shao, M., Yang, C. and Gu, M. (2018). A robust and efficient implementation of LOBPCG, SIAM Journal on Scientific Computing 40(5): C655–C676, DOI: 10.1137/17M1129830.
  7. Erhel, J. and Frédéric, G. (1997). An Augmented Subspace Conjugate Gradient, PhD thesis, INRIA, Rennes.
  8. Fan, X., Chen, P., Wu, R. and Xiao, S. (2014). Parallel computing study for the large-scale generalized eigenvalue problems in modal analysis, Science China Physics, Mechanics and Astronomy 57(3): 477–489.
  9. Feng, Y. and Owen, D. (1996). Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems, International Journal for Numerical Methods in Engineering 39(13): 2209–2229.
  10. Geng, M. and Sun, S. (2023). Projection improved SPAI preconditioner for FGMRES, Numerical Mathematics: Theory, Methods and Applications 16(4): 1035–1052.
  11. Guarracino, M., Perla, F. and Zanetti, P. (2006). A parallel block Lanczos algorithm and its implementation for the evaluation of some eigenvalues of large sparse symmetric matrices on multicomputers, International Journal of Applied Mathematics and Computer Science 16(2): 241–249.
  12. Hernandez, V., Roman, J.E. and Vidal, V. (2003). SLEPc: Scalable Library for Eigenvalue Problem Computations, Lecture Notes in Computer Science 2565: 377–391.
  13. Hernandez, V., Roman, J.E. and Vidal, V. (2005). SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Transactions on Mathematical Software (TOMS) 31(3): 351–362.
  14. Hetmaniuk, U. and Lehoucq, R. (2006). Basis selection in LOBPCG, Journal of Computational Physics 218(1): 324–332.
  15. Il’in, V. (2019). Projection methods in Krylov subspaces, Journal of Mathematical Sciences 240(6): 772–782.
  16. Knyazev, A.V. (2001). Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SIAM Journal on Scientific Computing 23(2): 517–541.
  17. Knyazev, A.V., Argentati, M.E., Lashuk, I. and Ovtchinnikov, E.E. (2007). Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in Hypre and PETSc, SIAM Journal on Scientific Computing 29(5): 2224–2239.
  18. Kolodziej, S.P., Aznaveh, M., Bullock, M., David, J., Davis, T.A., Henderson, M., Hu, Y. and Sandstrom, R. (2019). The suitesparse matrix collection website interface, Journal of Open Source Software 4(35): 1244.
  19. Kressner, D., Ma, Y. and Shao, M. (2023). A mixed precision LOBPCG algorithm, Numerical Algorithms 94(4): 1653–1671, DOI: 10.1007/s11075-023-01550-9.
  20. Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, Journal of Research of the National Bureau of Standards 45(4): 255—282.
  21. Li, Y., Chen, P.Y., Du, T. and Matusik, W. (2023). Learning preconditioners for conjugate gradient PDE solvers, International Conference on Machine Learning, Honolulu, USA, pp. 19425–19439.
  22. Roman, J.E., Campos, C., Romero, E. and Tomás, A. (2016). SLEPc users manual, Departamento di Sistemas Informàticos y Computación, Universitat Politècnica de València, TR DSIC-II/24/02, Rev 3.
  23. Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, USA.
  24. Sleijpen, G.L. and Van der Vorst, H.A. (2000). A Jacobi–Davidson iteration method for linear eigenvalue problems, SIAM Review 42(2): 267–293.
  25. Stathopoulos, A. and McCombs, J.R. (2010). PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description, ACM Transactions on Mathematical Software 37(2): 21:1–21:30.
  26. Sulaiman, I.M., Kaelo, P., Khalid, R. and Nawawi, M.K.M. (2024). A descent generalized RMIL spectral gradient algorithm for optimization problems, International Journal of Applied Mathematics and Computer Science 34(2): 225–233, DOI: 10.61822/amcs-2024-0016.
  27. Wu, L., Romero, E. and Stathopoulos, A. (2017). Primme svds: A high-performance preconditioned SVD solver for accurate large-scale computations, SIAM Journal on Scientific Computing 39(5): S248–S271, DOI: 10.1137/16M1082214.
  28. Yin, J., Voss, H. and Chen, P. (2013). Improving eigenpairs of automated multilevel substructuring with subspace iterations, Computers & Structures 119(1): 115–124.
  29. Yuan, M., Chen, P., Xiong, S., Li, Y. and Wilson, E.L. (1989). TheWYD method in large eigenvalue problems, Engineering computations 6(1): 49–57.
  30. Yuan, Y., Sun, S., Chen, P. and Yuan, M. (2021). Adaptive relaxation strategy on basic iterative methods for solving linear systems with single and multiple right-hand sides, Advances in Applied Mathematics and Mechanics 13(2): 378–403.
DOI: https://doi.org/10.61822/amcs-2025-0020 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 281 - 292
Submitted on: Jul 27, 2024
Accepted on: Dec 16, 2024
Published on: Jun 24, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Tailai Ma, Shuli Sun, Fangyi Zheng, Pu Chen, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.