Have a personal or library account? Click to login
A Combination of Two Conjugate Gradient Methods Under A New Line Search with its Application in Image Restoration Problems Cover

A Combination of Two Conjugate Gradient Methods Under A New Line Search with its Application in Image Restoration Problems

Open Access
|Jun 2025

References

  1. Andrei, N. (2008). An unconstrained optimization test functions, Advanced Modeling and Optimization 10(1): 147–161.
  2. Andrei, N. (2009). Another nonlinear conjugate gradient algorithm for unconstrained optimization, Optimization Methods & Software 24(1): 89–104.
  3. Chen, Z., Shao, H., Liu, P., Li, G. and Rong, X. (2024). An efficient hybrid conjugate gradient method with an adaptive strategy and applications in image restoration problems, Applied Numerical Mathematics 204: 362–379.
  4. Collignon, T., P. and Van Gijzen, M., B. (2010). Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids, International Journal of Applied Mathematics and Computer Science 20(1): 109–121, DOI: 10.2478/v10006-010-0008-4.
  5. Dai, Y.H. and Yuan, Y. (2001). An efficient hybrid conjugate gradient method for unconstrained optimization, Annals of Operations Research 103: 33–47.
  6. Djordjevic, S.S. (2017). New hybrid conjugate gradient method as a convex combination of LS and CD methods, Filomat 31(6): 1813–1825.
  7. Dolan, E.D. and Moré, J.J. (2002). Benchmarking optimization software with performance profiles, Mathematical Programming 91: 201–213.
  8. Fletcher, R. (1997). Practical Method of Optimization, 2nd Ed., Wiley, NewYork.
  9. Gilbert, J.C. and Nocedal, J. (1992). Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization 2(1): 21–42.
  10. Hamoda, M., Mamat, M., Rivaie, M. and Salleh, Z. (2016). A conjugate gradient method with strong Wolfe-Powell line search for unconstrained optimization, Applied Mathematical Sciences 10(15): 721–734.
  11. Hestenes, M.R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards 49(6): 409–436.
  12. Khudhur, H.M. and Halil, I.H. (2024). Noise removal from images using the proposed three-term conjugate gradient algorithm, Computer Research and Modeling 16(4): 841–853.
  13. Liu, J.K. and Li, S.J. (2014). New hybrid conjugate gradient method for unconstrained optimization, Applied Mathematics and Computation 245: 36–43.
  14. Liu, Y. and Storey, C. (1991). Efficient generalized conjugate gradient algorithms, Part 1: Theory, Journal of Optimization Theory and Applications 69: 129–137.
  15. Mehamdia, A. E., Chaib, Y. and Bechouat, T. (2025). Two improved nonlinear conjugate gradient methods with application in conditional model regression function, Journal of Industrial and Management Optimization 21(2): 658–675.
  16. Polak, E. and Ribière, G. (1969). Note sur la convergence de méthodes des directions conjuguées, Revue Francaise d’Informatique et Recherche, Opérationelle 3(16): 35–43.
  17. Polyak, B.T. (1969). The conjugate gradient method in extremal problems, USSR Computational Mathematics and Mathematical Physics 9(4): 94–112.
  18. Rahali, N., Belloufi, M. and Benzine, R. (2021). A new conjugate gradient method for acceleration of gradient descent algorithms, Moroccan Journal of Pure and Applied Analysis 7(1): 1–11.
  19. Saleh, M.A. (2023). Enhancing deep learning optimizers for detecting malware using line search method under strong wolfe conditions, 2023 3rd International Conference on Computing and Information Technology (ICCIT), Tabuk, Saudi Arabia, pp. 222–226.
  20. Souli, C., Ziadi, R., Lakhdari, I. and Leulmi, A. (2025). An efficient hybrid conjugate gradient method for unconstrained optimization and image restoration problems, Iranian Journal of Numerical Analysis and Optimization 15(1): 99–123.
  21. Sulaiman, I.M., Kaelo, P., Khalid, R. and Nawawi, M.K.M. (2024). A descent genertalized rmil spectral gradient algorithm for optimization problems, International Journal of Applied Mathematics and Computer Science 34(2): 225–233, DOI: 10.61822/amcs-2024-0016.
  22. Wei, Z., Yao, S. and Liu, L. (2006). The convergence properties of some new conjugate gradient methods, Applied Mathematics and Computation 183(2): 1341–1350.
  23. Yousif, O.O.O. and Saleh, M.A. (2024). Another modified version of rmil conjugate gradient method, Applied Numerical Mathematics 202: 120–126.
  24. Zhang, L. (2009). An improved Wei–Yao–Liu nonlinear conjugate gradient method for optimization computation, Applied Mathematics and Computation 215(6): 2269–2274.
  25. Zheng, X.Y., Dong, X.L., Shiand, J.R. and Yang, W. (2020). Further comment on another hybrid conjugate gradient algorithm for unconstrained optimization by Andrei, Numerical Algorithms 84: 603–608.
  26. Ziadi, R. and Bencherif-Madani, A. (2024). A mixed algorithm for smooth global optimization, Journal of Mathematical Modeling 11(2): 207––228.
  27. Ziadi, R. and Bencherif-Madani, A. (2025). A perturbed quasi-newton algorithm for bound-constrained global optimization, Journal of Computational Mathematics 43: 143–173.
  28. Ziadi, R., Ellaia, R. and Bencherif-Madani, A. (2017). Global optimization through a stochastic perturbation of the Polak–Ribière conjugate gradient method, Journal of Computational and Applied Mathematics 317: 672–684.
DOI: https://doi.org/10.61822/amcs-2025-0019 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 267 - 280
Submitted on: Oct 3, 2024
Accepted on: Dec 27, 2024
Published on: Jun 24, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Asma Maiza, Raouf Ziadi, Mohammed A. Saleh, Abdulgader Z. Almaymuni, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.