References
- Andrei, N. (2008). An unconstrained optimization test functions, Advanced Modeling and Optimization 10(1): 147–161.
- Andrei, N. (2009). Another nonlinear conjugate gradient algorithm for unconstrained optimization, Optimization Methods & Software 24(1): 89–104.
- Chen, Z., Shao, H., Liu, P., Li, G. and Rong, X. (2024). An efficient hybrid conjugate gradient method with an adaptive strategy and applications in image restoration problems, Applied Numerical Mathematics 204: 362–379.
- Collignon, T., P. and Van Gijzen, M., B. (2010). Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids, International Journal of Applied Mathematics and Computer Science 20(1): 109–121, DOI: 10.2478/v10006-010-0008-4.
- Dai, Y.H. and Yuan, Y. (2001). An efficient hybrid conjugate gradient method for unconstrained optimization, Annals of Operations Research 103: 33–47.
- Djordjevic, S.S. (2017). New hybrid conjugate gradient method as a convex combination of LS and CD methods, Filomat 31(6): 1813–1825.
- Dolan, E.D. and Moré, J.J. (2002). Benchmarking optimization software with performance profiles, Mathematical Programming 91: 201–213.
- Fletcher, R. (1997). Practical Method of Optimization, 2nd Ed., Wiley, NewYork.
- Gilbert, J.C. and Nocedal, J. (1992). Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization 2(1): 21–42.
- Hamoda, M., Mamat, M., Rivaie, M. and Salleh, Z. (2016). A conjugate gradient method with strong Wolfe-Powell line search for unconstrained optimization, Applied Mathematical Sciences 10(15): 721–734.
- Hestenes, M.R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards 49(6): 409–436.
- Khudhur, H.M. and Halil, I.H. (2024). Noise removal from images using the proposed three-term conjugate gradient algorithm, Computer Research and Modeling 16(4): 841–853.
- Liu, J.K. and Li, S.J. (2014). New hybrid conjugate gradient method for unconstrained optimization, Applied Mathematics and Computation 245: 36–43.
- Liu, Y. and Storey, C. (1991). Efficient generalized conjugate gradient algorithms, Part 1: Theory, Journal of Optimization Theory and Applications 69: 129–137.
- Mehamdia, A. E., Chaib, Y. and Bechouat, T. (2025). Two improved nonlinear conjugate gradient methods with application in conditional model regression function, Journal of Industrial and Management Optimization 21(2): 658–675.
- Polak, E. and Ribière, G. (1969). Note sur la convergence de méthodes des directions conjuguées, Revue Francaise d’Informatique et Recherche, Opérationelle 3(16): 35–43.
- Polyak, B.T. (1969). The conjugate gradient method in extremal problems, USSR Computational Mathematics and Mathematical Physics 9(4): 94–112.
- Rahali, N., Belloufi, M. and Benzine, R. (2021). A new conjugate gradient method for acceleration of gradient descent algorithms, Moroccan Journal of Pure and Applied Analysis 7(1): 1–11.
- Saleh, M.A. (2023). Enhancing deep learning optimizers for detecting malware using line search method under strong wolfe conditions, 2023 3rd International Conference on Computing and Information Technology (ICCIT), Tabuk, Saudi Arabia, pp. 222–226.
- Souli, C., Ziadi, R., Lakhdari, I. and Leulmi, A. (2025). An efficient hybrid conjugate gradient method for unconstrained optimization and image restoration problems, Iranian Journal of Numerical Analysis and Optimization 15(1): 99–123.
- Sulaiman, I.M., Kaelo, P., Khalid, R. and Nawawi, M.K.M. (2024). A descent genertalized rmil spectral gradient algorithm for optimization problems, International Journal of Applied Mathematics and Computer Science 34(2): 225–233, DOI: 10.61822/amcs-2024-0016.
- Wei, Z., Yao, S. and Liu, L. (2006). The convergence properties of some new conjugate gradient methods, Applied Mathematics and Computation 183(2): 1341–1350.
- Yousif, O.O.O. and Saleh, M.A. (2024). Another modified version of rmil conjugate gradient method, Applied Numerical Mathematics 202: 120–126.
- Zhang, L. (2009). An improved Wei–Yao–Liu nonlinear conjugate gradient method for optimization computation, Applied Mathematics and Computation 215(6): 2269–2274.
- Zheng, X.Y., Dong, X.L., Shiand, J.R. and Yang, W. (2020). Further comment on another hybrid conjugate gradient algorithm for unconstrained optimization by Andrei, Numerical Algorithms 84: 603–608.
- Ziadi, R. and Bencherif-Madani, A. (2024). A mixed algorithm for smooth global optimization, Journal of Mathematical Modeling 11(2): 207––228.
- Ziadi, R. and Bencherif-Madani, A. (2025). A perturbed quasi-newton algorithm for bound-constrained global optimization, Journal of Computational Mathematics 43: 143–173.
- Ziadi, R., Ellaia, R. and Bencherif-Madani, A. (2017). Global optimization through a stochastic perturbation of the Polak–Ribière conjugate gradient method, Journal of Computational and Applied Mathematics 317: 672–684.