Have a personal or library account? Click to login
Investigating The Problem of Misdiagnosis in Model–Based Fault Diagnosis Cover

Investigating The Problem of Misdiagnosis in Model–Based Fault Diagnosis

Open Access
|Jun 2025

References

  1. Armengol, J., Bregón, A., Escobet, T., Gelso, E., Krysander, M., Nyberg, M., Olive, X., Pulido, B. and Travè-Massuyès, L. (2009). Minimal structurally overdetermined sets for residual generation: A comparison of alternative approaches, IFAC Proceedings Volumes 42(8): 1480–1485.
  2. Bartyś, M. (2013). Generalised reasoning about faults based on diagnostic matrix, International Journal of Applied Mathematics and Computer Science 23(2): 407–417.
  3. Bartyś, M. (2014). Selected Issues of Fault Isolation, Polish Scientific Publishers, Warsaw.
  4. Bartyś, M. (2021). Fault compensation effect in fault detection and isolation, Acta IMEKO 10(3): 45–53.
  5. Biswas, G., Kapadia, R. and Yu, X. (1997). Combined qualitative-quantitative steady-state diagnosis of continuous-valued systems, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 27(2): 167–185.
  6. Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2015). Diagnosis and Fault-Tolerant Control, Springer, New York.
  7. Bregón, A., Alonso-González, C.J. and Pulido, B. (2014). Integration of simulation and state observers for online fault detection of nonlinear continuous systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(12): 1553–1568.
  8. Bregón, A., Biswas, G., Pulido, B., Alonso-Gonzalez, C. and Khorasgani, H. (2013). A common framework for compilation techniques applied to diagnosis of linear dynamic systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(7): 863–876.
  9. Chen, J. and Patton, R. (1999). Robust model Based Fault Diagnosis for Dynamic Systems, Kluwer Akademic Publishers, Boston.
  10. Cordier, M., Dague, P., Lévy, F., Montmain, J., Staroswiecki, M. and Travé-Massuyés, L. (2004). Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 34(5): 2163–2177.
  11. Daigle, M., Koutsoukos, X. and Biswas, G. (2009). A qualitative event-based approach to continuous systems diagnosis, IEEE Transactions on Control Systems Technology 17(4): 780–793.
  12. de Kleer, J. and Kurien, J. (2003). Fundamentals of model-based diagnosis, IFAC Proceedings Volumes 36(5): 25–36.
  13. de Kleer, J., Mackworth, A.K. and Reiter, R. (1992). Characterizing diagnoses and systems, Artificial Intelligence 56(2): 197–222.
  14. de Kleer, J. andWilliams, B. (1987). Diagnosing multiple faults, Artificial Intelligence 32(1): 97–130.
  15. Düstegör, D., Frisk, E., Cocquempot, V., Krysander, M. and Staroswiecki, M. (2006). Structural analysis of fault isolability in the damadics benchmark, Control Engineering Practice 14(6): 597–608.
  16. Eskandari, A., Nedaei, A., Milimonfared, J. and Aghaei, M. (2024). A multilayer integrative approach for diagnosis, classification and severity detection of electrical faults in photovoltaic arrays, Expert Systems with Applications 252(Part A): 124111.
  17. Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy, Automatica 26(3): 459–474.
  18. Gertler, J. (1991). Analitical redunduncy methods in fault detection and isolation, IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS’91, Baden-Baden, pp. 9–21.
  19. Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York.
  20. Jia, F., Cao, F., Lyu, G. and He, X. (2023). A novel framework of cooperative design: Bringing active fault diagnosis into fault-tolerant control, IEEE Transactions on Cybernetics 53(5): 3301–3310.
  21. Korbicz, J., Kóscielny, J.M., Kowalczuk, Z. and Cholewa, W. (Eds) (2004). Fault Diagnosis. Models, Artificial Intelligence, Applications, Springer, Berlin.
  22. Kóscielny, J.M. (1995). Fault isolation in industrial processes by dynamic table of states method, Automatica 31(5): 747–753.
  23. Kóscielny, J.M. (1999). Application of fuzzy logic fault isolation in a three-tank system, IFAC Proceedings Volumens 32(2): 7754–7759.
  24. Kóscielny, J.M. and Bartyś, M. (2023). A new method of diagnostic row reasoning based on trivalent residuals, Expert Systems with Applications 214: 119116.
  25. Kóscielny, J.M., Bartyś, M. and Grudziak, Z. (2021). Tri–valued evaluation of residuals as a method of addressing the problem of fault compensation effect, in J. Korbicz, K. Patan and M. Luzar (Eds), Advances in Diagnostics of Processes and Systems, Springer, Cham, pp. 31–44.
  26. Kóscielny, J.M., Bartyś, M. and Rostek, K. (2019). The comparison of fault distinguishability approaches – Case study, Bulletin of the Polish Academy of Sciences Technical Sciences 67(6): 1059–1068.
  27. Kóscielny, J. M., Bartyś, M., Rzepiejewski, P. and da Costa, J. S. (2006). Actuator fault distinguishability study of the damadics benchmark problem, Control Engineering Practice 14(6): 645–652.
  28. Kóscielny, J.M., Bartyś, M. and Syfert, M. (2012). Methods of multiple fault isolation in large scale systems, IEEE Transactions On Control Systems Technology 20(5): 1302–1310.
  29. Kóscielny, J.M., Syfert, M., Rostek, K. and Sztyber, A. (2016). Fault isolability with different forms of faults-symptoms relation, International Journal of AppliedMathematics and Computer Science 26(4): 815–826.
  30. Kóscielny, J.M., Syfert, M. and Wnuk, P. (2021). Diagnostic row reasoning method based on multiple-valued evaluation of residuals and elementary symptoms sequence, Energies 14(2476).
  31. Krysander, M., Aslund, J. and Nyberg, M. (2007). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics–Part A: Systems and Humans 38(1): 197–206.
  32. Kunpeng, Z., Bin, J., Fuyang, C. and Hui, Y. (2023). Directed-graph-learning-based diagnosis of multiple faults for high speed train with switched dynamics, IEEE Transactions on Cybernetics 53(3): 1712–1724.
  33. Liu, J., Wang, X., Wu, S., Wan, L. and Xie, F. (2023). Wind turbine fault detection based on deep residual networks, Expert Systems with Applications 213: 119102.
  34. Pawlak, Z. (1991). Rough Sets. Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, Boston.
  35. Puig, V., Schmid, F., Quevedo, J. and Pulido, B. (2005). A new fault diagnosis algorithm that improves the integration of fault detection and isolation, 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 3809–3814.
  36. Pulido, B. and González, C. (2004). Possible conflicts: a compilation technique for consistency-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34(5): 2192–2206.
  37. Reiter, R.A. (1987). Theory of diagnosis from first principles, Artificial Intelligence 32(1): 57–95.
  38. Song, Q. and Jiang, P. (2022). A multi-scale convolutional neural network based fault diagnosis model for complex chemical processes, Process Safety and Environmental Protection 159: 575–584.
  39. Struss, P. and Dressier, O. (1992). “Physical negation”: Integrating fault models into the general diagnostic system, Proceedings of the 11th International Joint Conference on Artificial Intelligence, Vol.2, pp. 1318–1323.
  40. Su, J. and Chen, W. (2019). Model-Based Fault Diagnosis System Verification Using Reachability Analysis, IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(4): 742–751.
  41. Tatara, M.S. and Kowalczuk, Z. (2024). Approximate and analytic flow models for leak detection and identification, International Journal of Applied Mathematics and Computer Science 34(3): 391–407.
  42. Travè-Massuyès, L. (2014). Bridges between diagnosis theories from control and AI perspectives, in J. Korbicz and M. Kowal (Eds), Intelligent Systems in Technical and Medical Diagnostics, Berlin/Heidelberg, pp. 3–28.
  43. Xia, D. and Fu, X. (2024). Observer-based sliding-mode fault-tolerant consistent control for hybrid event-triggered multi-agent systems, International Journal of Applied Mathematics and Computer Science 34(3): 361–373.
  44. Zheng, S. and Zhao, J. (2022). High-fidelity positive-unlabeled deep learning for semi-supervised fault detection of chemical processes, Process Safety and Environmental Protection 165: 191–204.
DOI: https://doi.org/10.61822/amcs-2025-0017 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 235 - 250
Submitted on: Sep 28, 2024
Accepted on: Jan 22, 2025
Published on: Jun 24, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Jan Maciej Kóscielny, Michał Bartyś, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.