References
- Alain, R. (2013). Direct optimization of the dictionary learning problem, IEEE Transactions on Signal Processing 61(22): 5495–5506.
- Atwood, C.L. (1969). Optimal and efficient designs of experiments, The Annals of Mathematical Statistics 40(5): 1570–1602.
- Bauschke, H.H., Bolte, J. and Teboulle, M. (2016). A descent lemma beyond Lipschitz gradient continuity: First order methods revisited and applications, Mathematics of Operations Research 42(2): 330–348.
- Bauschke, H.H. and Borwein, J.M. (1997). Legendre functions and the method of Bregman projections, Journal of Convex Analysis 4(1): 27–67.
- Beck, A. and Eldar, Y. (2012). Sparsity constrained nonlinear optimization: Optimality conditions and algorithms, SIAM Journal on Optimization 23: 1480–1509.
- Bertero, M., Boccacci, P., Desidera, G. and Vicidomini, G. (2009). Image deblurring with poisson data: From cells to galaxies, Inverse Problems 25(12): 123006.
- Bhatia, R. (2011). Matrix Analysis, World Books Publishing Corporation, Beijing.
- Bolte, J., Sabach, S. and M.Teboulle (2014). Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming 146(1): 459–494.
- Bolte, J., Sabach, S. and M.Teboulle (2018). First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems, SIAM Journal on Optimization 28(3): 2131–2151.
- Candes, E.J., Wakin, M.B. and Boyd., S.P. (2008). Enhancing sparsity by reweighted ℓ1 minimization, Journal of Fourier Analysis and Applications 14(5): 877–905.
- Censor, Y. and Zenios, S.A. (1992). Proximal minimization algorithm with d-functions, Journal of Optimization Theory and Applications 73(3): 451–464.
- Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Processing Letters 14(10): 707–710.
- Chen, G. and Teboulle, M. (1993). Convergence analysis of a proximal-like minimization algorithm using Bregman functions, SIAM Journal on Optimization 3(3): 538–543.
- Eckstein, J. (1993). Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming, Mathematics of Operations Research 18(1): 202–226.
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association 96(456): 1348–1361.
- Fazel, M., Hindi, H. and Boyd, S.P. (2003). Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices, Proceedings of the 2003 American Control Conference, Denver, USA, pp. 2156–2162.
- Gao, Y. and Sun, D. (2010). A majorized penalty approach for calibrating rank constrained correlation matrix problems, 2010 IEEE International Conference on Computing, Guiyang, Guizhou, China.
- Horn, R.A. and Johnson, C.R. (1990). Matrix Analysis, Cambridge University Press, Cambridge.
- Ji, S., Sze, K.-F., Zhou, Z., So, A. M.-C. and Ye, Y. (2013). Beyond convex relaxation: A polynomial-time non-convex optimization approach to network localization, 2013 Proceedings IEEE INFOCOM, Turin, Italy, pp. 2499–2507, DOI: 10.1109/INFCOM.2013.6567056.
- Jia, X., Feng, X. and Wang, W. (2020). Generalized unitarily invariant gauge regularization for fast low-rank matrix recovery, IEEE Transactions on Neural Networks and Learning Systems 32(4): 1627–1641.
- Li, J.-R. and White, J. (2001). Reduction of large circuit models via low rank approximate gramians, International Journal of Applied Mathematics and Computer Science 11(5): 1151–1171.
- Liang, Z., Zeng, D. and Guo, S. (2022). A fusion representation for face learning by low-rank constrain and high-frequency texture components, Pattern Recognition Letters 155: 48–53, DOI:10.1016/j.patrec.2022.01.022.
- Liu, T., Lu, Z. and Chen, X. (2020). An exact penalty method for semidefinite-box-constrained low-rank matrix optimization problems, IMA Journal of Numerical Analysis 40(1): 563–586.
- Lu, Y., Zhang, L. and Wu, J. (2015a). A smoothing majorization method for matrix minimization, Optimization Methods and Software 30(1): 682–705.
- Lu, Z., Zhang, Y. and Li, X. (2015b). Penalty decomposition methods for rank minimization, Optimization Methods and Software 30(3): 531–558.
- Lu, Z., Zhang, Y. and Lu, J. (2017).ℓp Regularized low-rank approximation via iterative reweighted singular value minimization, Computational Optimization and Applications 68(3): 619–642.
- Luke, D.R. (2017). Phase retrieval. What’s new?, SIAG/OPT Views and News 25(1): 1–5.
- Nguyen, Q.V. (2017). Forward-backward splitting with Bregman distances, Vietnam Journal of Mathematics 45(3): 519–539.
- Recht, B., Fazel, M. and Parrilo, P.A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Review 52(3): 471–501.
- Recht, B., Xu, W. and Hassibi, B. (2011). Null space conditions and thresholds for rank minimization, Mathematical Programming 127: 175–202.
- Sulaiman, I.M., Kaelo, P., Khalid, R. and Nawawi, M.K.M. (2024). A descent generalized RMIL spectral gradient algorithm for optimization problems, International Journal of Applied Mathematics and Computer Science 34(2): 225–233, DOI: 10.61822/amcs-2024-0016.
- Teboulle, M. (1992). Entropic proximal mappings with application to nonlinear programming, Mathematics of Operations Research 17(3): 670–690.
- Ülkü, I. and Kizgut, E. (2018). Large-scale hyperspectral image compression via sparse representations based on online learning, International Journal of Applied Mathematics and Computer Science 28(1): 197–207, DOI: 10.2478/amcs-2018-0015.
- Wang, S., Xiao, S. and Zhu, W. (2022). Multi-view fuzzy clustering of deep random walk and sparse low-rank embedding, Information Sciences 586: 224–238.
- Xu, Z., Chang, X., Xu, F. and Zhang, H. (2012). L1/2 regularization: A thresholding representation theory and a fast solver, IEEE Transactions on Neural Networks and Learning Systems 586(7): 1013–1027.
- Yang, S., Tan, Y., Dong, R. and Tan, Q. (2023). Nonsmooth optimization control based on a sandwich model with hysteresis for piezo-positioning systems, International Journal of Applied Mathematics and Computer Science 33(3): 449–461, DOI: 10.34768/amcs-2023-0033.
- Zhong, Y., Li, C., Li, Z. and Duan, X. (2022). A proximal based algorithm for piecewise sparse approximation with application to scattered data fitting, International Journal of Applied Mathematics and Computer Science 32(4): 671–682, DOI: 10.34768/amcs-2022-0046.