Have a personal or library account? Click to login
A Unified Convex Combination Approach to Switched Uncertain Nonlinear Systems Cover

A Unified Convex Combination Approach to Switched Uncertain Nonlinear Systems

By: Yufang Chang,  Guisheng Zhai and  Bo Fu  
Open Access
|Apr 2025

References

  1. Alwan, M.S. and Liu, X. (2016). Recent results on stochastic hybrid dynamical systems, Journal of Control and Decision 3(1): 68–103.
  2. Boyd, S., Ghaoui, L.E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
  3. Branicky, M.S. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control 43(4): 475–482.
  4. Chang, Y., Zhai, G. and Fu, B. (2023). Quadratic stabilization and L2 performance design of switched uncertain nonlinear systems, Proceedings of the 23rd International Conference on Control, Automation and Systems (ICCAS 2023), Yeosu, Korea, pp. 127–132.
  5. Chang, Y., Zhai, G., Fu, B. and Xiong, L. (2019). Quadratic stabilization of switched uncertain linear systems: A convex combination approach, IEEE/CAA Journal of Automatica Sinica 6(5): 1116–1126.
  6. Chang, Y., Zhai, G., Xiong, L. and Fu, B. (2022a). An extended convex combination approach for quadratic L2 performance analysis of switched uncertain linear systems, IEEE/CAA Journal of Automatica Sinica 9(9): 1706–1709.
  7. Chang, Y., Zhai, G., Xiong, L. and Fu, B. (2022b). New development in quadratic L2 performance of switched uncertain stochastic systems, Electronics 11(13): 1963.
  8. DeCarlo, R., Branicky, M.S., Pettersson, S. and Lennartson, B. (2000). Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE 88(7): 1069–1082.
  9. Egidio, L.N. and Deaecto, G.S. (2021). Dynamic output feedback control of discrete-time switched affine systems, IEEE Transactions on Automatic Control 66(9): 4417–4423.
  10. Feron, E. (1996). Quadratic stabilizability of switched system via state and output feedback, Technical Report CICS-P-468, Massachusetts Institute of Technology, Cambridge.
  11. Goebel, R., Sanfelice, R. and Teel, A. (2009). Hybrid dynamical systems, IEEE Control Systems Magazine 29(2): 28–93.
  12. Hespanha, J.P. and Morse, A.S. (1999). Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, USA, pp. 2655–2660.
  13. Ji, Z., Wang, L., Xie, G. and Hao, F. (2004). Linear matrix inequality approach to quadratic stabilisation of switched systems, IEE Proceedings—Control Theory and Applications 151(3): 289–294.
  14. Khargonekar, P.P., Petersen, I.R. and Zhou, K. (1990). Robust stabilization of uncertain linear systems: Quadratic stabilizability and H control theory, IEEE Transactions on Automatic Control 35(3): 356–361.
  15. Leth, J. and Wisniewski, R. (2014). Local analysis of hybrid systems on polyhedral sets with state-dependent switching, International Journal of Applied Mathematics and Computer Science 24(2): 341–355, DOI: 10.2478/amcs-2014-0026.
  16. Liberzon, D. (2003). Switching in Systems and Control, Birkh¨auser, Boston.
  17. Liberzon, D. and Morse, A.S. (1999). Basic problems in stability and design of switched systems, IEEE Control Systems Magazine 19(5): 59–70.
  18. Liu, X. and Li, S. (2022). Optimal control for a class of impulsive switched systems, Journal of Control and Decision 10(4): 529–537.
  19. Morse, A.S. (1996). Supervisory control of families of linear set-point controllers. Part 1: Exact marching, IEEE Transactions on Automatic Control 41(10): 1413–1431.
  20. Petersen, I.R. (1987). A stabilization algorithm for a class of uncertain linear systems, Systems & Control Letters 8(4): 351–357.
  21. Rantzer, A. (1996). On the Kalman–Yakubovich–Popov lemma, Systems & Control Letters 28(1): 7–10.
  22. Sánchez, M. and Bernal, M. (2019). LMI-based robust control of uncertain nonlinear systems via polytopes of polynomials, International Journal of Applied Mathematics and Computer Science 29(2): 275–283, DOI: 10.2478/amcs-2019-0020.
  23. Sassano, M., Mylvaganam, T. and Astolfi, A. (2019). An algebraic approach to dynamic optimisation of nonlinear systems: A survey and some new results, Journal of Control and Decision 6(1): 1–29.
  24. Shorten, R., Wirth, F., Mason, O., Wulff, K. and King, C. (2007). Stability criteria for switched and hybrid systems, SIAM Review 49(4): 545–592.
  25. Siljak, D.D. and Stipanovic, D.M. (2000). Robust stabilization of nonlinear systems: The LMI approach, Mathematical Problems in Engineering 6(5): 461–493.
  26. Stankovic, S.S., Stipanovic, D.M. and Siljak, D.D. (2007). Decentralized dynamic output feedback for robust stabilization of a class of nonlinear interconnected systems, Automatica 43(5): 861–867.
  27. van der Schaft, A. and Schumacher, H. (2000). An Introduction to Hybrid Dynamical Systems, Springer, London.
  28. Wicks, M.A., Peleties, P. and DeCarlo, R.A. (1998). Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems, European Journal of Control 4(2): 140–147.
  29. Yang, H., Jiang, B., Cocquempot, V. and Lu, L. (2012). Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach, International Journal of Applied Mathematics and Computer Science 22(1): 87–97, DOI: 10.2478/v10006-012-0006-9.
  30. Yang, Y., Karimi, H.R. and Xiang, Z. (2013). Robust H switching rule design for boost converters with uncertain parameters and disturbances, Abstract and Applied Analysis 2013: 120543, DOI: 10.1155/2013/120543.
  31. Yu, Q. and Zhai, G. (2020). Stability analysis of switched systems under φ-dependent average dwell time approach, IEEE Access 8: 30655–30663, DOI: 10.1109/ACCESS.2020.2971267.
  32. Xiao, M., Zhai, G. and Huang, C. (2020). Quadratic stabilisation of switched affine systems, Journal of Control and Decision 7(1): 1–23.
  33. Xu, X. and Antsaklis, P.J. (2000). Stabilization of second-order LTI switched systems, International Journal of Control 73(14): 1261–1279.
  34. Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. (2000). Piecewise Lyapunov functions for switched systems with average dwell time, Asian Journal of Control 2(3): 192–197.
  35. Zhai, G., Lin, H. and Antsaklis, P.J. (2003). Quadratic stabilizability of switched linear systems with polytopic uncertainties, International Journal of Control 76(7): 747–753.
DOI: https://doi.org/10.61822/amcs-2025-0009 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 117 - 128
Submitted on: Jul 2, 2024
Accepted on: Oct 11, 2024
Published on: Apr 1, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Yufang Chang, Guisheng Zhai, Bo Fu, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.