Have a personal or library account? Click to login
On Robustness to a Topological Perturbation in Fluid Mechanics Cover
Open Access
|Apr 2025

References

  1. Amstutz, S. (2005). The topological asymptotic for the Navier–Stokes equations, ESAIM: Control, Optimization and Calculus of Variations 11(3): 401–425.
  2. Amstutz, S. (2006). Topological sensitivity analysis for some nonlinear PDE systems, Journal de Mathématiques Pures et Appliquées 85(4): 540–557.
  3. Baumann, P. and Sturm, K. (2022). Adjoint-based methods to compute higher-order topological derivatives with an application to elasticity, Engineering Computations 39(1): 60–114.
  4. Bewley, T.R., Temam, R. and Ziane, M. (2000). A general framework for robust control in fluid mechanics, Physica D: Nonlinear Phenomena 138(3–4): 360–392.
  5. Bogachev, V.I. and Ruas, M.A.S. (2007). Measure Theory, Vol. 1, Springer, Berlin.
  6. Boyer, F. and Fabrie, P. (2005). Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, Springer, Berlin.
  7. Brett, C.E. (2014). Optimal Control and Inverse Problems Involving Point and Line Functionals and Inequality Constraints, PhD thesis, University of Warwick, Coventry.
  8. Caubet, F. and Dambrine, M. (2012). Localization of small obstacles in Stokes flow, Inverse Problems 28(10): 105007.
  9. Dáger, R. (2006). Insensitizing controls for the 1-D wave equation, SIAM Journal on Control and Optimization 45(5): 1758–1768.
  10. Dziri, R., Moubachir, M. and Zolésio, J.-P. (2004). Dynamical shape gradient for the Navier–Stokes system, Comptes Rendus Mathematique 338(2): 183–186.
  11. Dziri, R. and Zolésio, J.-P. (2011). Drag reduction for non-cylindrical Navier–Stokes flows, Optimization Methods and Software 26(4–5): 575–600.
  12. Ekeland, I. and Temam, R. (1999). Convex Analysis and Variational Problems, SIAM, Philadelphia.
  13. Ervedoza, S., Lissy, P. and Privat, Y. (2022). Desensitizing control for the heat equation with respect to domain variations, Journal de l’École Polytechnique Mathématiques 9: 1397–1429.
  14. Galdi, G. (2011). An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, Springer, New York.
  15. Garreau, S., Guillaume, P. and Masmoudi, M. (2001). The topological asymptotic for PDE systems: The elasticity case, SIAM Journal on Control and Optimization 39(6): 1756–1778.
  16. Giusti, S.M., Sokołowski, J. and Stebel, J. (2015). On topological derivatives for contact problems in elasticity, Journal of Optimization Theory and Applications 165: 279–294.
  17. Guerrero, S. (2007). Controllability of systems of Stokes equations with one control force: Existence of insensitizing controls, Annales de l’Institut Henri Poincaré C, Analyse non linéaire 24(6): 1029–1054.
  18. Gueye, M. (2013). Insensitizing controls for the Navier–Stokes equations, Annales de l’Institut Henri Poincaré C, Analyse non linéaire 30(5): 825–844.
  19. Gugat, M. and Lazar, M. (2023). Optimal control problems without terminal constraints: The turnpike property with interior decay, International Journal of Applied Mathematics and Computer Science 33(3): 429–438, DOI: 10.34768/amcs-2023-0031.
  20. Gugat, M. and Sokołowski, J. (2023). An aspect of the turnpike property: Long time horizon behavior, Serdica Mathematical Journal 49(1–3): 127–154.
  21. Guillaume, P. and Hassine, M. (2008). Removing holes in topological shape optimization, ESAIM: Control, Optimisation and Calculus of Variations 14(1): 160–191.
  22. Hassine, M. and Masmoudi, M. (2004). The topological asymptotic expansion for the quasi-Stokes problem, ESAIM: Control, Optimisation and Calculus of Variations 10(4): 478–504.
  23. Hlaváček, I., Novotny, A., Sokołowski, J. and ˙Zochowski, A. (2009). On topological derivatives for elastic solids with uncertain input data, Journal of Optimization Theory and Applications 141(3): 569–595.
  24. Iguernane, M., Nazarov, S.A., Roche, J.-R., Sokolowski, J. and Szulc, K. (2009). Topological derivatives for semilinear elliptic equations, International Journal of Applied Mathematics and Computer Science 19(2): 191–205, DOI: 10.2478/v10006-009-0016-4.
  25. Kovtunenko, V.A. and Kunisch, K. (2014). High precision identification of an object: Optimality-conditions-based concept of imaging, SIAM Journal on Control and Optimization 52(1): 773–796.
  26. Krzy˙zanowski, P., Malikova, S., Mucha, P. B. and Piasecki, T. (2024). Comparative analysis of obstacle approximation strategies for the steady incompressible Navier–Stokes equations, Applied Mathematics & Optimization 89(2): 1–20.
  27. Leugering, G., Novotny, A.A. and Sokołowski, J. (2022). On the robustness of the topological derivative for Helmholtz problems and applications, Control and Cybernetics 51(2): 227–248.
  28. Lions, J. (1992). Sentinelles pour les Systmès Distribuésà Données Incomplètes, Masson, Paris.
  29. Logg, A., Mardal, K.-A. and Wells, G. (2012). Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Springer, Berlin.
  30. Moubachir, M. and Zolesio, J.-P. (2006). Moving Shape Analysis and Control: Applications to Fluid Structure Interactions, Chapman and Hall/CRC, Boca Raton.
  31. Novotny, A.A. and Sokołowski, J. (2012). Topological Derivatives in Shape Optimization, Springer, Berlin.
  32. Novotny, A.A., Sokołowski, J. and ˙Zochowski, A. (2019). Applications of the Topological Derivative Method, Springer, Cham.
  33. Sá, N.L., Amigo, R.R., Novotny, A.A. and Silva, N.E. (2016). Topological derivatives applied to fluid flow channel design optimization problems, Structural and Multidisciplinary Optimization 54: 249–264.
  34. Sokołowski, J. and ˙Zochowski, A. (1999). On the topological derivative in shape optimization, SIAM Journal on Control and Optimization 37(4): 1251–1272.
  35. Sokołowski, J. and Zolésio, J.-P. (1992). Introduction to Shape Optimization, Springer, Berlin.
  36. Sturm, K. (2020). Topological sensitivities via a Lagrangian approach for semilinear problems, Nonlinearity 33(9): 4310.
  37. Szabó, B. and Babuška, I. (2011). Introduction to Finite Element Analysis: Formulation, Verification and Validation, Wiley, Chichester.
  38. Tröltzsch, F. (2024). Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society, Providence.
DOI: https://doi.org/10.61822/amcs-2025-0006 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 69 - 81
Submitted on: May 29, 2024
Accepted on: Dec 10, 2024
Published on: Apr 1, 2025
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Merwan Abdelbari, Khadra Nachi, Jan Sokołowski, Antonio Andre Novotny, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.