Have a personal or library account? Click to login
Discrete–Time Linear Systems with Desired Poles and Zeros of the Transfer Matrices Cover

Discrete–Time Linear Systems with Desired Poles and Zeros of the Transfer Matrices

Open Access
|Apr 2025

References

  1. Antsaklis, P. and Michel, A. (1997). Linear Systems,Birkh¨auser, Boston.
  2. Emirsajłow, Z. (2021). Discrete-time output observers for boundary control systems, International Journal of Applied Mathematics and Computer Science 31(4): 613–626, DOI: 10.34768/amcs-2021-0042.
  3. Fadhilah, H.N., Adzkiya, D., Arif, D.K., Zhai, G. and Mardlijah (2023). Decentralized static output feedback controller design for linear interconnected systems, International Journal of Applied Mathematics and Computer Science 33(1): 83–96, DOI: 10.34768/amcs-2023-0007.
  4. Gantmacher, F. (1959). The Theory of Matrices, Chelsea Publisher Company, London.
  5. Hautus, M. and Heymann, M. (1978). Linear feedback—An algebraic approach, SIAM Journal on Control and Optimization 16(1): 83–105.
  6. Kaczorek, T. (1992). Linear Control Systems, Vols. 1 and 2, Wiley, New York.
  7. Kaczorek, T. (2021). Poles and zeros assignment by state feedbacks in positive linear systems, Archives of Control Sciences 31(3): 593–605.
  8. Kaczorek, T. (2022). Eigenvalues assignment in uncontrollable linear systems, Bulletin of the Polish Academy of Sciences, Technical Sciences 70(6): 1–3.
  9. Kaczorek, T. (2023a). Eigenvalues assignment in descriptor linear systems by state and its derivative feedbacks, Bulletin of the Polish Academy of Sciences: Technical Sciences 71(5): 1–5.
  10. Kaczorek, T. (2023b). Transformations of the matrices of linear systems to their canonical form with desired eigenvalues, Bulletin of the Polish Academy of Sciences: Technical Sciences 71(6): 1–5.
  11. Kaczorek, T. (2024). Transformations of linear standard systems to positive asymptotically stable linear ones, International Journal of Applied Mathematics and Computer Science 34(3): 341–348, DOI: 10.61822/amcs-2024-0024.
  12. Kaczorek, T. and Ruszewski, R. (2022). Global stability of discrete-time feedback nonlinear systems with descriptor positive linear parts and interval state matrices, International Journal of Applied Mathematics and Computer Science 32(1): 5–10, DOI: 10.34768/amcs-2022-0001.
  13. Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs.
  14. Kalman, R. (1960). On the general theory of control systems, Proceedings of the 1st IFAC Congress Automatic Control, Moscow, Russia, pp. 481–492.
  15. Kalman, R. (1963). Mathematical description of linear dynamical systems, SIAM Journal of Control A 1(2): 152–192.
  16. Klamka, J. (1991). Controllability of Dynamical Systems, Springer, Dordrecht.
  17. Klamka, J. (2018). Controllability and Minimum Energy Control, Springer, Cham.
  18. Mitkowski, W. (2019). Outline of Control Theory, AGH University Press, Krakow, (in Polish).
  19. Schwarzenberg-Czerny, A. (1995). On matrix factorization and efficient least squares solution, Astronomy and Astrophysics Supplement 110: 405–410.
  20. Veselić, B., Milosavljević, C., Peruničić-Draženović, B., Huseinbegović, S. and Petronijević, M. (2020). Discrete-time sliding mode control of linear systems with input saturation, International Journal of Applied Mathematics and Computer Science 30(3): 517–528, DOI: 10.34768/amcs-2020-0038.
  21. Zak, S. (2003). Systems and Control, Oxford University Press, New York.
DOI: https://doi.org/10.61822/amcs-2025-0005 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 59 - 68
Submitted on: Nov 20, 2023
|
Accepted on: Mar 24, 2024
|
Published on: Apr 1, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Tadeusz Kaczorek, Łukasz Sajewski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.