References
- Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI), IEEE Access 6: 52138–52160, DOI: 10.1109/ACCESS.2018.2870052.
- Averkin, A. (2023). Ideas of Lotfi Zadeh in explainable artificial intelligence, in S.N. Shahbazova et al. (Eds), Recent Developments and the New Directions of Research, Foundations, and Applications, Springer, Cham, pp. 45–48.
- Barredo Arrieta, A., Diaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R. and Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Information Fusion 58: 82–115, DOI: 10.1016/j.inffus.2019.12.012.
- Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G. and Ranjan, R. (2023). Explainable AI (XAI): Core ideas, techniques, and solutions, ACM Computing Surveys 55(9): 1–33, DOI: 10.1145/3561048.
- Ezugwu, A.E., Ikotun, A.M., Oyelade, O.O., Abualigah, L., Agushaka, J.O., Eke, C.I. and Akinyelu, A.A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects, Engineering Applications of Artificial Intelligence 110: 104743, DOI: 10.1016/j.engappai.2022.104743.
- Fisher, A., Rudin, C. and Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously, Journal of Machine Learning Research 20(177):1–81.
- Grzegorowski, M. (2023). Selected aspects of interactive feature extraction, in J.F. Peters et al. (Eds), Transactions on Rough Sets XXIII, Springer, Berlin/Heidelberg, pp. 121–287, DOI: 10.1007/978-3-662-66544-2_8.
- Grzegorowski, M., Janusz, A., Lazewski, S., Swiechowski, M. and Jankowska, M. (2022). Prescriptive analytics for optimization of FMCG delivery plans, in D. Ciucci et al. (Eds), Proceedings of IPMU’22, Springer, Berlin/Heidelberg, pp. 44–53.
- Grzegorowski, M., Janusz, A.,Śliwa, G., Marcinowski, L. and Skowron, A. (2023). Towards ML explainability with rough sets, clustering, and dimensionality reduction, in A. Campagner et al. (Eds), Proceedings of IJCRS 2023, Springer, Berlin/Heidelberg, pp. 371–386.
- Grzegorowski, M. andŚlęzak, D. (2019). On resilient feature selection: Computational foundations of r-C-reducts, Information Sciences 499: 25–44, DOI: 10.1016/j.ins.2019.05.041.
- Guo, X., Lin, H., Wu, Y. and Peng, M. (2020). A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems, Future Generation Computer Systems 113: 407–417, DOI: 10.1016/j.future.2020.07.023.
- Habbal, A., Ali, M.K. and Abuzaraida, M.A. (2024). Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions, Expert Systems with Applications 240: 122442, DOI: 10.1016/j.eswa.2023.122442.
- Heide, N.F., Muller, E., Petereit, J. and Heizmann, M. (2021). X3SEG: Model-agnostic explanations for the semantic segmentation of 3D point clouds with prototypes and criticism, 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, USA, pp. 3687–3691.
- Ikotun, A.M., Ezugwu, A.E., Abualigah, L., Abuhaija, B. and Jia, H. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data, Information Sciences 622: 178–210, DOI: 10.1016/j.ins.2022.11.139.
- Janusz, A. andŚlęzak, D. (2015). Computation of approximate reducts with dynamically adjusted approximation threshold, in F. Esposito et al. (Eds), Proceedings of ISMIS 2015, Springer, Berlin/Heidelberg, pp. 19–28.
- Kannout, E., Grzegorowski, M., Grodzki, M. and Nguyen, H.S. (2024). Clustering-based frequent pattern mining framework for solving cold-start problem in recommender systems, IEEE Access 12: 13678–13698.
- Malefors, C., Secondi, L., Marchetti, S. and Eriksson, M. (2021). Food waste reduction and economic savings in times of crisis: The potential of machine learning methods to plan guest attendance in Swedish public catering during the COVID-19 pandemic, Socio-Economic Planning Sciences 82(A): 101041.
- Min, B., Ross, H., Sulem, E., Veyseh, A.P.B., Nguyen, T.H., Sainz, O., Agirre, E., Heintz, I. and Roth, D. (2023). Recent advances in natural language processing via large pre-trained language models: A survey, ACM Computing Surveys 56(2): 1–40, DOI: 10.1145/3605943.
- Pawlak, Z. (1982). Rough sets, International Journal of Computer and Information Sciences 11: 341–356.
- Pawlak, Z. and Skowron, A. (2007). Rudiments of rough sets, Information Sciences 177(1): 3–27.
- Penta, A. and Pal, A. (2021). What is this cluster about? explaining textual clusters by extracting relevant keywords, Knowledge-Based Systems 229: 107342.
- Pięta, P. and Szmuc, T. (2021). Applications of rough sets in big data analysis: An overview, International Journal of Applied Mathematics and Computer Science 31(4): 659–683, DOI: 10.34768/amcs-2021-0046.
- Przybyłek, A., Albecka, M., Springer, O. and Kowalski, W. (2022). Game-based sprint retrospectives: Multiple action research, Empirical Software Engineering 27(1): 1.
- Riza, L. S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F.,Ślęzak, D. and Benítez, J.M. (2014). Implementing algorithms of rough set theory and fuzzy rough set theory in the R package ‘RoughSets’, Information Sciences 287(0): 68–89.
- Stawicki, S.,Ślęzak, D., Janusz, A. and Widz, S. (2017). Decision bireducts and decision reducts—A comparison, International Journal of Approximate Reasoning 84: 75–109.
- Tarallo, E., Akabane, G.K., Shimabukuro, C.I., Mello, J. and Amancio, D. (2019). Machine learning in predicting demand for fast-moving consumer goods: An exploratory research, IFAC-PapersOnLine 52(13): 737–742.
- Zhang, C.-X., Zhang, J.-S. and Yin, Q.-Y. (2017). A ranking-based strategy to prune variable selection ensembles, Knowledge-Based Systems 125: 13–25.
- Zong, W., Chow, Y. and Susilo, W. (2020). Interactive three-dimensional visualization of network intrusion detection data for machine learning, Future Generation Computer Systems 102: 292–306.