Have a personal or library account? Click to login
On Explainability of Cluster Prototypes with Rough Sets: A Case Study in the FMCG Market Cover

On Explainability of Cluster Prototypes with Rough Sets: A Case Study in the FMCG Market

Open Access
|Apr 2025

References

  1. Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI), IEEE Access 6: 52138–52160, DOI: 10.1109/ACCESS.2018.2870052.
  2. Averkin, A. (2023). Ideas of Lotfi Zadeh in explainable artificial intelligence, in S.N. Shahbazova et al. (Eds), Recent Developments and the New Directions of Research, Foundations, and Applications, Springer, Cham, pp. 45–48.
  3. Barredo Arrieta, A., Diaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R. and Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Information Fusion 58: 82–115, DOI: 10.1016/j.inffus.2019.12.012.
  4. Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G. and Ranjan, R. (2023). Explainable AI (XAI): Core ideas, techniques, and solutions, ACM Computing Surveys 55(9): 1–33, DOI: 10.1145/3561048.
  5. Ezugwu, A.E., Ikotun, A.M., Oyelade, O.O., Abualigah, L., Agushaka, J.O., Eke, C.I. and Akinyelu, A.A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects, Engineering Applications of Artificial Intelligence 110: 104743, DOI: 10.1016/j.engappai.2022.104743.
  6. Fisher, A., Rudin, C. and Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously, Journal of Machine Learning Research 20(177):1–81.
  7. Grzegorowski, M. (2023). Selected aspects of interactive feature extraction, in J.F. Peters et al. (Eds), Transactions on Rough Sets XXIII, Springer, Berlin/Heidelberg, pp. 121–287, DOI: 10.1007/978-3-662-66544-2_8.
  8. Grzegorowski, M., Janusz, A., Lazewski, S., Swiechowski, M. and Jankowska, M. (2022). Prescriptive analytics for optimization of FMCG delivery plans, in D. Ciucci et al. (Eds), Proceedings of IPMU’22, Springer, Berlin/Heidelberg, pp. 44–53.
  9. Grzegorowski, M., Janusz, A.,Śliwa, G., Marcinowski, L. and Skowron, A. (2023). Towards ML explainability with rough sets, clustering, and dimensionality reduction, in A. Campagner et al. (Eds), Proceedings of IJCRS 2023, Springer, Berlin/Heidelberg, pp. 371–386.
  10. Grzegorowski, M. andŚlęzak, D. (2019). On resilient feature selection: Computational foundations of r-C-reducts, Information Sciences 499: 25–44, DOI: 10.1016/j.ins.2019.05.041.
  11. Guo, X., Lin, H., Wu, Y. and Peng, M. (2020). A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems, Future Generation Computer Systems 113: 407–417, DOI: 10.1016/j.future.2020.07.023.
  12. Habbal, A., Ali, M.K. and Abuzaraida, M.A. (2024). Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions, Expert Systems with Applications 240: 122442, DOI: 10.1016/j.eswa.2023.122442.
  13. Heide, N.F., Muller, E., Petereit, J. and Heizmann, M. (2021). X3SEG: Model-agnostic explanations for the semantic segmentation of 3D point clouds with prototypes and criticism, 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, USA, pp. 3687–3691.
  14. Ikotun, A.M., Ezugwu, A.E., Abualigah, L., Abuhaija, B. and Jia, H. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data, Information Sciences 622: 178–210, DOI: 10.1016/j.ins.2022.11.139.
  15. Janusz, A. andŚlęzak, D. (2015). Computation of approximate reducts with dynamically adjusted approximation threshold, in F. Esposito et al. (Eds), Proceedings of ISMIS 2015, Springer, Berlin/Heidelberg, pp. 19–28.
  16. Kannout, E., Grzegorowski, M., Grodzki, M. and Nguyen, H.S. (2024). Clustering-based frequent pattern mining framework for solving cold-start problem in recommender systems, IEEE Access 12: 13678–13698.
  17. Malefors, C., Secondi, L., Marchetti, S. and Eriksson, M. (2021). Food waste reduction and economic savings in times of crisis: The potential of machine learning methods to plan guest attendance in Swedish public catering during the COVID-19 pandemic, Socio-Economic Planning Sciences 82(A): 101041.
  18. Min, B., Ross, H., Sulem, E., Veyseh, A.P.B., Nguyen, T.H., Sainz, O., Agirre, E., Heintz, I. and Roth, D. (2023). Recent advances in natural language processing via large pre-trained language models: A survey, ACM Computing Surveys 56(2): 1–40, DOI: 10.1145/3605943.
  19. Pawlak, Z. (1982). Rough sets, International Journal of Computer and Information Sciences 11: 341–356.
  20. Pawlak, Z. and Skowron, A. (2007). Rudiments of rough sets, Information Sciences 177(1): 3–27.
  21. Penta, A. and Pal, A. (2021). What is this cluster about? explaining textual clusters by extracting relevant keywords, Knowledge-Based Systems 229: 107342.
  22. Pięta, P. and Szmuc, T. (2021). Applications of rough sets in big data analysis: An overview, International Journal of Applied Mathematics and Computer Science 31(4): 659–683, DOI: 10.34768/amcs-2021-0046.
  23. Przybyłek, A., Albecka, M., Springer, O. and Kowalski, W. (2022). Game-based sprint retrospectives: Multiple action research, Empirical Software Engineering 27(1): 1.
  24. Riza, L. S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F.,Ślęzak, D. and Benítez, J.M. (2014). Implementing algorithms of rough set theory and fuzzy rough set theory in the R package ‘RoughSets’, Information Sciences 287(0): 68–89.
  25. Stawicki, S.,Ślęzak, D., Janusz, A. and Widz, S. (2017). Decision bireducts and decision reducts—A comparison, International Journal of Approximate Reasoning 84: 75–109.
  26. Tarallo, E., Akabane, G.K., Shimabukuro, C.I., Mello, J. and Amancio, D. (2019). Machine learning in predicting demand for fast-moving consumer goods: An exploratory research, IFAC-PapersOnLine 52(13): 737–742.
  27. Zhang, C.-X., Zhang, J.-S. and Yin, Q.-Y. (2017). A ranking-based strategy to prune variable selection ensembles, Knowledge-Based Systems 125: 13–25.
  28. Zong, W., Chow, Y. and Susilo, W. (2020). Interactive three-dimensional visualization of network intrusion detection data for machine learning, Future Generation Computer Systems 102: 292–306.
DOI: https://doi.org/10.61822/amcs-2025-0002 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 19 - 31
Submitted on: Mar 25, 2024
|
Accepted on: Jan 9, 2025
|
Published on: Apr 1, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marek Grzegorowski, Andrzej Janusz, Łukasz Marcinowski, Andrzej Skowron, Dominik Ślęzak, Grzegorz Śliwa, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.