References
- Abdullah, E. and Turan, M.K. (2019). Classifying white blood cells using machine learning algorithms, International Journal of Engineering Research and Development 11(1): 141–152.
- Ahmad, R., Awais, M., Kausar, N. and Akram, T. (2023a). White blood cells classification using entropy-controlled deep features optimization, Diagnostics 13(3): 352–369.
- Ahmad, R., Awais, M., Kausar, N., Tariq, U., Cha, J.-H. and Balili, J. (2023b). Leukocytes classification for leukemia detection using quantum inspired deep feature selection, Cancers 15(9): 2507–2524.
- Almezhghwi, K. and Serte, S. (2020). Improved classification of white blood cells with the generative adversarial network and deep convolutional neural network, Computational Intelligence and Neuroscience 2020(01): 6490479.
- Alruwaili, M. (2021). An intelligent medical imaging approach for various blood structure classifications, Complexity 2021(01): 5573300.
- Bartlett, M.S. (1937). Properties of sufficiency and statistical tests, Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 160(901): 268–282.
- Farag, M.R. and Alagawany, M. (2018). Erythrocytes as a biological model for screening of xenobiotics toxicity, Chemico-Biological Interactions 279: 73–83.
- Gupta, D., Agrawal, U., Arora, J. and Khanna, A. (2020). Bat-inspired algorithm for feature selection and white blood cell classification, in X. Yang (Ed), Nature-Inspired Computation and Swarm Intelligence, Academic Press, Cambridge, pp. 179–197.
- He, B., Lu, Q., Lang, J., Yu, H., Peng, C., Bing, P., Li, S., Zhou, Q., Liang, Y. and Tian, G. (2020). A new method for CTC images recognition based on machine learning, Frontiers in Bioengineering and Biotechnology 8: 897–907.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVR), Las Vegas, USA, pp. 770–778.
- Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv: 1704.04861.
- Huang, H., Wu, N., Liang, Y., Peng, X. and Shu, J. (2022). Slnl: A novel method for gene selection and phenotype classification, International Journal of Intelligent Systems 37(9): 6283–6304.
- ImageNet (2024). ImageNet project image database, http://www.image-net.org.
- Iqbal, M., Naeem, M., Ahmed, A., Awais, M., Anpalagan, A. and Ahmad, A. (2018). Swarm intelligence based resource management for cooperative cognitive radio network in smart hospitals, Wireless Personal Communications 98: 571–592.
- Jung, C., Abuhamad, M., Mohaisen, D., Han, K. and Nyang, D. (2022). WBC image classification and generative models based on convolutional neural network, BMC Medical Imaging 22(1): 1–16.
- Kandukuri, U.R., Prakash, A.J., Patro, K.K., Neelapu, B.C., Tadeusiewicz, R. and Pławiak, P. (2023). Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea, International Journal of Applied Mathematics and Computer Science 33(3): 493–506, DOI: 10.34768/amcs-2023-0036.
- Ko, B., Gim, J. and Nam, J. (2011). Cell image classification based on ensemble features and random forest, Electronics Letters 47(11): 638–639.
- Kouzehkanan, Z.M., Saghari, S., Tavakoli, S., Rostami, P., Abaszadeh, M., Mirzadeh, F., Satlsar, E.S., Gheidishahran, M., Gorgi, F., Mohammadi, S. and Hosseini, R. (2022). A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm, Scientific Reports 12(1): 1123–1137.
- Liu, J., Lin, Y., Li, Y., Weng, W. and Wu, S. (2018). Online multi-label streaming feature selection based on neighborhood rough set, Pattern Recognition 84: 273–287.
- Lu, S., Liu, S., Hou, P., Yang, B., Liu,M., Yin, L. and Zheng,W. (2023). Soft tissue feature tracking based on deep matching network, Computer Modeling in Engineering and Sciences 136(1): 363–379.
- Malik, S., Akram, T., Awais, M., Khan, M.A., Hadjouni, M., Elmannai, H., Alasiry, A., Marzougui, M. and Tariq, U. (2023). An improved skin lesion boundary estimation for enhanced-intensity images using hybrid metaheuristics, Diagnostics 13(7): 1285.
- Mathur, A., Tripathi, A.S. and Kuse,M. (2013). Scalable system for classification of white blood cells from Leishman stained blood stain images, Journal of Pathology Informatics 4(2): 15–20.
- Redmon, J. and Farhadi, A. (2018). YOLOv3: An incremental improvement, arXiv: 1804.02767.
- Rezatofighi, S.H. and Soltanian-Zadeh, H. (2011). Automatic recognition of five types of white blood cells in peripheral blood, Computerized Medical Imaging and Graphics 35(4): 333–343.
- Sajjad, M., Khan, S., Jan, Z., Muhammad, K., Moon, H., Kwak, J.T., Rho, S., Baik, S.W. and Mehmood, I. (2017). Leukocytes classification and segmentation in microscopic blood smear: A resource-aware healthcare service in smart cities, IEEE Access 5: 3475–3489.
- Sakaguchi, K., Akimoto, K., Takaira, M., Tanaka, R.-i., Shimizu, T. and Umezu, S. (2022). Cell-based microfluidic device utilizing cell sheet technology, Cyborg and Bionic Systems 2022: 9758187.
- Sarrafzadeh, O., Rabbani, H., Talebi, A. and Banaem, H.U. (2014). Selection of the best features for leukocytes classification in blood smear microscopic images, Medical Imaging 2014: Digital Pathology, San Diego, USA, pp. 159–166.
- Shahzad, A., Raza, M., Shah, J.H., Sharif, M. and Nayak, R.S. (2022). Categorizing white blood cells by utilizing deep features of proposed 4B-additionNet-based CNN network with ant colony optimization, Complex & Intelligent Systems 8: 3143–3159.
- Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples), Biometrika 52(3–4): 591–611.
- Sharma, S., Gupta, S., Gupta, D., Juneja, S., Gupta, P., Dhiman, G. and Kautish, S. (2022). Deep learning model for the automatic classification of white blood cells, Computational Intelligence and Neuroscience 2022: 7384131.
- Su, M.-C., Cheng, C.-Y. and Wang, P.-C. (2014). A neural-network-based approach to white blood cell classification, The Scientific World Journal 2014: 796371.
- Sun, T., Lv, J., Zhao, X., Li, W., Zhang, Z. and Nie, L. (2023). In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging, Photoacoustics 34: 100569.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015). Going deeper with convolutions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 1–9.
- Tan, M. and Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks, Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, pp. 6105–6114.
- Tavakoli, S., Ghaffari, A., Kouzehkanan, Z.M. and Hosseini, R. (2021). New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images, Scientific Reports 11(1): 19428.
- Turner, J.R. and Thayer, J. (2001). Introduction to Analysis of Variance: Design, Analysis & Interpretation: Design, Analyis & Interpretation, Sage, Thousand Oakes.
- Weatherspoon, D. (2024). What to know about white blood cells, Medical News Today, https://www.medicalnewstoday.com/articles/327446.
- Yao, X., Sun, K., Bu, X., Zhao, C. and Jin, Y. (2021). Classification of white blood cells using weighted optimized deformable convolutional neural networks, Artificial Cells, Nanomedicine, and Biotechnology 49(1): 147–155.
- Yu, Y., Wan, M., Qian, J., Miao, D., Zhang, Z. and Zhao, P. (2024). Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets, International Journal of Approximate Reasoning 169: 109181.
- Zhang, C., Ge, H., Zhang, S., Liu, D., Jiang, Z., Lan, C., Li, L., Feng, H. and Hu, R. (2021). Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage, Neurology and Therapy 10: 1001–1013.
- Zhang, R., Tan, J., Cao, Z., Xu, L., Liu, Y., Si, L. and Sun, F. (2024). Part-aware correlation networks for few-shot learning, IEEE Transactions on Multimedia 26: 9527–9538.
- Zhu, C. (2024). Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users, Journal of Cloud Computing 13(1): 119.