References
- Abusnaina, A. and Abdullah, R. (2014). Spiking neuron models: A review, International Journal of Digital Content Technology and its Applications 8(3): 14–21.
- Albert, Shalumov1, R., Halaly1, Elishai, E. and Tsur (2021). Lidar-driven spiking neural network for collision avoidance in autonomous driving, Bioinspiration % Biomimetics 16(6): 066016.
- Allred, J. and Roy, K. (2020). Controlled forgetting: Targeted stimulation and dopaminergic plasticity modulation for unsupervised lifelong learning in spiking neural networks, Frontiers in Neuroscience 14: 1–16, Article no. 7.
- Bartłomiejczyk, P., Trujillo, F.L. and Signerska-Rynkowska, J. (2023). Spike patterns and chaos in a map-based neuron model, International Journal of Applied Mathematics and Computer Science 33(3): 395–408, DOI: 10.34768/amcs-2023-0028.
- Cech, J., Hanis, T., Kononisky, A., Rurtle, T., Svancar, J. and Twardzik, T. (2021). Self-supervised learning of camera-based drivable surface roughness, 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, pp. 1319–1325.
- Chen, D.-G., Chen, X. and Zhang, K. (2016). An exploratory statistical cusp catastrophe model, 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, Canada, pp. 100–109.
- Chen, D.-G., Lin, F., Chen, X., Tang, W. and Kitzman, H. (2014). Cusp catastrophe model a nonlinear model for health outcomes in nursing research, Nursing Research 63(3): 211–220.
- Chen, X., Stanton, B., Chen, D.-G. and Li, X. (2013). Intention to use condom, cusp modeling, and evaluation of an HIV prevention intervention trial, Nonlinear Dynamics, Psychology, and Life Sciences 17(3): 385–403.
- Cheng, H.-P., Wen, W., Wu, C., Li, S., Li, H.H. and Chen, Y. (2017). Understanding the design of IBM neurosynaptic system and its tradeoffs: A user perspective, Design, Automation % Test in Europe Conference %Exhibition (DATE 2017), Lausanne, Switzerland, pp. 139–144.
- Chu, L., Raghavendra, R., Srivatsa, M., Preece, A. and Harborne, D. (2019). Feature importance identification through bottleneck reconstruction, 2019 IEEE International Conference on Cognitive Computing (ICCC), Milan, Italy, pp. 64–66.
- Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S.H., Dimou, G., Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y.-H., Wild, A., Yang, Y. and Wang, H. (2018). Loihi: A neuromorphic manycore processor with on-chip learning, IEEE Micro 38(1): 82–99.
- Daw, R. and He, Z. (2020). Deep neural network in cusp catastrophe model, arXiv: 2004.02359, DOI: 10.48550/arXiv.2004.02359.
- de Beurs, D., Bockting, C., Kerkhof, A., Scheepers, F., O’Connor, R. and van de Leemput, I. (2020). A network perspective on suicidal behavior: Understanding suicidality as a complex system, Suicide and Life-Threatening Behavior 51(1): 115–126.
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 248–255.
- Diehl, P. and Cook, M. (2014). Efficient implementation of STDP rules on spinnaker neuromorphic hardware, Proceedings of the International Joint Conference on Neural Networks, Beijing, China, pp. 4288–4295.
- Encke, J. and Hemmert,W. (2018). Extraction of inter-aural time differences using a spiking neuron network model of the medial superior olive, Frontiers in Neuroscience 12: 1–12, Article no. 140.
- Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T. and Tian, Y. (2021). Incorporating learnable membrane time constant to enhance learning of spiking neural networks, 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, pp. 2641–2651.
- Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., Leutenegger, S., Davison, A.J., Conradt, J., Daniilidis, K. and Scaramuzza, D. (2022). Event-based vision: A survey, IEEE Transactions on Pattern Analysis and Machine Intelligence 44(1): 154–180.
- Griffin, G., Holub, A. and Perona, P. (2007). Caltech-256 object category dataset, CalTech Report, California Institute of Technology, Pasadena, DOI: 10.22002/D1.20087.
- Guastello, S., Aruka, Y., Doyle, M. and Smerz, K. (2008). Cross-cultural generalizability of a cusp catastrophe model for binge drinking among college students, Nonlinear Dynamics, Psychology, and Life Sciences 12(4): 397–407.
- Halassa, M.M. and Acsády, L. (2016). Thalamic inhibition: Diverse sources, diverse scales, Trends in Neurosciences 39(10): 680–693.
- Hazan, H., Saunders, D., Sanghavi, D. T., Siegelmann, H. and Kozma, R. (2018). Unsupervised learning with self-organizing spiking neural networks, 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, pp. 1–6.
- He, K., Zhang, X., Ren, S. and Sun, J. (2015). Deep residual learning for image recognition, CoRR: abs/1512.03385.
- Hua, Y., Loomba, S., Pawlak, V., Voit, K.-M., Laserstein, P., Boergens, K.M., Wallace, D.J., Kerr, J.N. and Helmstaedter, M. (2022). Connectomic analysis of thalamus-driven disinhibition in cortical layer 4, Cell Reports 41(2): 111476.
- Huderek, D., Szcz˛esny, S. and Rato, R. (2019). Spiking neural network based on cusp catastrophe theory, Foundations of Computing and Decision Sciences 44(3): 273–284.
- Izhikevich, E. (2004). Which model to use for cortical spiking neurons?, IEEE Transactions on Neural Networks 15(5): 1063–1070.
- Kozdon, K. and Bentley, P. (2017). Wide learning: Using an ensemble of biologically-plausible spiking neural networks for unsupervised parallel classification of spatio-temporal patterns, 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, USA, pp. 1–8.
- Leong, M., Prasad, D., Lee, Y. and Lin, F. (2020). Semi-CNN architecture for effective spatio-temporal learning in action recognition, Applied Sciences 10(2): 557.
- Li, G., Deng, L., Chua, Y., Li, P., Neftci, E.O. and Li, H. (2020). Editorial: Spiking neural network learning, benchmarking, programming and executing, Frontiers in Neuroscience 14: 1–4, Article no. 276.
- Li, H., Liu, H., Ji, X., Li, G. and Shi, L. (2017). CIFAR10-DVS: An event-stream dataset for object classification, Frontiers in Neuroscience 11: 1–10, Article no. 309.
- Liang, Q., Shenoy, P. and Irwin, D. (2020). AI on the edge: Characterizing AI-based IoT applications using specialized edge architectures, 2020 IEEE International Symposium on Workload Characterization (IISWC), Beijing, China, pp. 145–156.
- Lim, Y. and Golden, J.A. (2007). Patterning the developing diencephalon, Brain Research Reviews 53(1): 17–26.
- Markram, H., Gerstner, W. and Sjöström, P.J. (2012). Spike-timing-dependent plasticity: A comprehensive overview, Frontiers in Synaptic Neuroscience 4: 1–3, Article no. 2.
- Mayr, C., Hoeppner, S. and Furber, S. (2019). Spinnaker 2: A 10 million core processor system for brain simulation and machine learning, arXiv: 1911.02385, DOI: 10.48550/arXiv.1911.02385.
- Meftah, B., Lezoray, O., Lecluse, M. and Benyettou, A. (2010). Cell microscopic segmentation with spiking neuron networks, in K. Diamantaras et al. (Eds), Artificial Neural Networks—ICANN 2010, Springer, Berlin/Heidelberg, pp. 117–126.
- Na, B., Mok, J., Park, S., Lee, D., Choe, H. and Yoon, S. (2022). AutoSNN: Towards energy-efficient spiking neural networks, 39th International Conference on Machine Learning, Baltimore, USA.
- Nazari, S., Amiri, M., Faez, K. and Van Hulle, M.M. (2020). Information transmitted from bioinspired neuron–astrocyte network improves cortical spiking network’s pattern recognition performance, IEEE Transactions on Neural Networks and Learning Systems 31(2): 464–474.
- Neculae, G. (2020). Ensemble Learning for Spiking Neural Networks, PhD thesis, University of Manchester, Manchester.
- Neftci, E.O., Mostafa, H. and Zenke, F. (2019). Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks, IEEE Signal Processing Magazine 36(6): 51–63.
- Oster, S., Deiner, M., Birgbauer, E. and Sretavan, D. (2004). Ganglion cell axon pathfinding in the retina and optic nerve, Seminars in Cell % Developmental Biology 15(1): 125–136.
- Pereira-Pires, J.E., Ferreira, J. and Rato, R. (2019). Spike based computing: A novel hardware to compute and control with spikes in space, ESA contract nº 4000117067/16/NL/MH/gm, Final Report, European Space Agency, Paris, DOI: 10.13140/RG.2.2.22848.97286.
- Pietrzak, P., Szcz˛esny, S., Huderek, D. and Przyborowski, L. (2023). Overview of spiking neural network learning approaches and their computational complexities, Sensors 23(6): 3037.
- Pisarev, A., Busygin, A., Udovichenko, S.Y. and Maevsky, O. (2020). A biomorphic neuroprocessor based on a composite memristor-diode crossbar, Microelectronics Journal 102: 104827, DOI: 10.1016/j.mejo.2020.104827.
- Ponghiran, W., Srinivasan, G. and Roy, K. (2019). Reinforcement learning with low-complexity liquid state machines, Frontiers in Neuroscience 13: 1–14, Article no. 883.
- Ponulak, F. (2008). Analysis of the ReSuMe learning process for spiking neural networks, International Journal of Applied Mathematics and Computer Science 18(2): 117–127, DOI: 10.2478/v10006-008-0011-1.
- Quevedo, A., Mørch, C., Andersen, O. and Coghill, R. (2017). Lateral inhibition during nociceptive processing, PAIN 158(6): 1046–1052.
- Raha, A., Kim, S.K., Mathaikutty, D.A., Venkataramanan, G., Mohapatra, D., Sung, R., Brick, C. and Chinya, G.N. (2021). Design considerations for edge neural network accelerators: An industry perspective, 2021 34th International Conference on VLSI Design/2021 20th International Conference on Embedded Systems (VLSID), Guwahati, India, pp. 328–333.
- Rajbahadur, G.K.,Wang, S., Oliva, G.A., Kamei, Y. and Hassan, A.E. (2022). The impact of feature importance methods on the interpretation of defect classifiers, IEEE Transactions on Software Engineering 48(7): 2245–2261.
- Raz, Halaly, Elishai, E. and Tsur (2023). Autonomous driving controllers with neuromorphic spiking neural networks, Front Neurorobot 17: 1234962, DOI: 10.3389/fnbot.2023.1234962.
- Rowcliffe, P., Feng, J. and Buxton, H. (2006). Spiking perceptrons, IEEE Transactions on Neural Networks 17(3): 803–807.
- Salt, L., Howard, D., Indiveri, G. and Sandamirskaya, Y. (2020). Parameter optimization and learning in a spiking neural network for UAV obstacle avoidance targeting neuromorphic processors, IEEE Transactions on Neural Networks and Learning Systems 31(9): 3305–3318.
- Shrestha, Sumit, B. and Orchard, G. (2018). Slayer: Spike layer error reassignment in time, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada.
- Stagsted, R., Vitale, A., Binz, J., Renner, A., Larsen, L.B. and Sandamirskaya, Y. (2020). Towards neuromorphic control: A spiking neural network based PID controller for UAV, Robotics: Science and Systems 2020, Corvalis, USA, pp. 1–8, DOI: 10.5167/uzh-200415.
- Szczęsny, S. (2017). 0.3 V 2.5 nW per channel current-mode CMOS perceptron for biomedical signal processing in amperometry, IEEE Sensors Journal 17(17): 5399–5409.
- Szczęsny, S., Huderek, D. and Przyborowski, L. (2021). Spiking neural network with linear computational complexity for waveform analysis in amperometry, Sensors 21(9): 3276.
- Tazerart, S., Mitchell, D.E., Miranda-Rottmann, S. and Araya, R. (2019). A spike-timing-dependent plasticity rule for single, clustered and distributed dendritic spines, bioRxiv: 397323, https://www.biorxiv.org/content/early/2019/01/27/397323.
- Torrico, T. and Munakomi, S. (2020). Neuroanatomy, Thalamus, National Library of Medicine, Bethesda, https://www.ncbi.nlm.nih.gov/books/NBK542184/.
- Viale, A., Marchisio, A., Martina, M., Masera, G. and Shafique, M. (2021). CARSNN: An efficient spiking neural network for event-based autonomous cars on the Loihi neuromorphic research processor, 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, pp. 1–10.
- Vosahlik, D., Cech, J., Hanis, T., Konopisky, A., Rurtle, T., Svancar, J. and Twardzik, T. (2021). Self-supervised learning of camera-based drivable surface friction, 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, USA, pp. 2773–2780.
- Wu, D., Yi, X. and Huang, X. (2022). A little energy goes a long way: Build an energy-efficient, accurate spiking neural network from convolutional neural network, Frontiers in Neuroscience 16: 1–11, Article no. 759900.
- Wu, Y., Deng, L., Li, G., Zhu, J. and Shi, L. (2018a). Direct training for spiking neural networks: Faster, larger, better, 3rd AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu, USA, pp. 1311–1318.
- Wu, Y., Deng, L., Li, G., Zhu, J. and Shi, L. (2018b). Spatio-temporal backpropagation for training high-performance spiking neural networks, Frontiers in Neuroscience 12: 1–12, Article no. 331.
- Xuelei, C. (2023). Autonomous driving using spiking neural networks on dynamic vision sensor data: A case study of traffic light change detection, arXiv: 2311.09225, DOI: 10.48550/arXiv.2311.09225.
- Zhao, J., Fang, J., Ye, Z. and Zhang, L. (2021). Large scale autonomous driving scenarios clustering with self-supervised feature extraction, 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, pp. 473–480.
- Zhou, J., Dai, J. and Weng, S. (2022). Effect of adjacent lateral inhibition on light and electric-stimulated synaptic transistors, IEEE Electron Device Letters 43(4): 573–575.