Baszczyńska, A. (2016). Smoothing Parameter of the Density Functions for Random Variables in Economic Research, Lodz University Press, Łódź, (in Polish).
Cateni, S., Colla, V. and Vannucci, M. (2008). Outlier detection methods for industrial applications, in J. Aramburo and A.R. Trevino (Eds), Advances in Robotics, Automation and Control, I-Tech, Vienna, pp. 265–282.
Charytanowicz, M., Kulczycki, P., Kowalski, P.A., Lukasik, S. and Czabak-Garbacz, R. (2018). An evaluation of utilizing geometric features for wheat grain classification using x-ray images, Computers and Electronics in Agriculture 144(1): 260–268.
Charytanowicz, M., Perzanowski, K., Januszczak, M., Wołoszyn-Gałęza, A. and Kulczycki, P. (2020). Application of complete gradient clustering algorithm for analysis of wildlife spatial distribution, Ecological Indicators 113(6): 106216.
Czmil, S., Kluska, J. and Czmil, A. (2024). An empirical study of a simple incremental classifier based on vector quantizzation and adaptive resonance theory, International Journal of Applied Mathematics and Computer Science 34(1): 149–165, DOI: 10.61822/amcs-2024-0011.
Kłopotek, R., Kłopotek, M. and Wierzchoń, S. (2020). A feasible k-means kernel trick under non-Euclidean feature space, International Journal of Applied Mathematics and Computer Science 30(4): 703–715, DOI: 10.34768/amcs-2020-0052.
Kulczycki, P. (2020). Methodically unified procedures for outlier detection, clustering and classification, in K. Arai (Ed.), Proceedings of the Future Technologies Conference (FTC), Springer, Cham, pp. 460–474.
Kulczycki, P. and Franus, K. (2021). Methodically unified procedures for a conditional approach to outlier detection, clustering, and classification, Information Sciences 560: 504–527.
Kulczycki, P. and Kruszewski, D. (2017). Identification of atypical elements by transforming task to supervised form with fuzzy and intuitionistic fuzzy evaluations, Applied Soft Computing 60(11): 623–633.
Kulczycki, P. and Kruszewski, D. (2019). Detection of rare elements in investigation of medical problems, in N.T. Nguen et al., (Eds), Intelligent Information and Database Systems, Springer, Singapore, pp. 257–268.
Yang, J., Tan, X. and Rahardja, S. (2023). Outlier detection: How to select k for k-nearest-neighbors-based outlier detectors, Pattern Recognition Letter 174: 112–117.