Abhulimen, K.E. and Susu, A.A. (2004). Liquid pipeline leak detection system: Model development and numerical simulation, Chemical Engineering Journal97(1): 47–67.
Brown, G. (2003). The history of the Darcy–Weisbach equation for pipe flow resistance, in J.R. Rogers and A.J. Fredrich (Eds), Environmental and Water Resources History, American Society of Civil Engineers, Washington, pp. 34–43, DOI: abs/10.1061/40650(2003)4.
Deb, K. and Gupta, H. (2005). Searching for robust Pareto-optimal solutions in multi-objective optimization, in C.A. Coello Coello et al. (Eds), Evolutionary Multi-Criterion Optimization, Springer, Berlin/Heidelberg, pp. 150–164.
Deb, K., Zope, P. and Jain, A. (2003). Distributed computing of Pareto-optimal solutions with evolutionary algorithms, in C.M. Fonseca et al. (Eds), Evolutionary Multi-Criterion Optimization, Springer, Berlin/Heidelberg, pp. 534–549.
Doshmanziari, R., Khaloozadeh, H. and Nikoofard, A. (2020). Gas pipeline leakage detection based on sensor fusion under model-based fault detection framework, Journal of Petroleum Science and Engineering184: 106581.
Dulhoste, J.-F., Besancon, G., Torres, L., Begovich, O. and Navarro, A. (2011). About friction modeling for observer-based leak estimation in pipelines, 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, USA, pp. 4413–4418.
Fereidooni, Z., Tahayori, H. and Bahadori-Jahromi, A. (2021). A hybrid model-based method for leak detection in large scale water distribution networks, Journal of Ambient Intelligence and Humanized Computing12(2): 1613–1629.
Jiménez, J., Torres, L., Verde, C. and Sanjuán, M. (2017). Friction estimation of pipelines with extractions by using state observers, IFAC-PapersOnLine50(1): 5361–5366.
Korbicz, J., Patan, K. and Obuchowicz, A. (1999). Dynamic neural networks for process modelling in fault detection and isolation systems, International Journal of Applied Mathematics and Computer Science9(3): 519–546.
Kościelny, J.M., Syfert, M., Rostek, K. and Sztyber, A. (2016). Fault isolability with different forms of the faults–symptoms relation, International Journal of Applied Mathematics and Computer Science26(4): 815–826, DOI: 10.1515/amcs-2016-0058.
Kowalczuk, Z. and Białaszewski, T. (2017). Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria, Engineering Optimization50(1): 120–144.
Kowalczuk, Z. and Gunawickrama, K. (2004). Detecting and locating leaks in transmission pipelines, in J. Korbicz et al. (Eds), Fault Diagnosis, Springer, Berlin/Heidelberg, pp. 821–864.
Kowalczuk, Z., Suchomski, P. and Białaszewski, T. (1999). Evolutionary multi-objective Pareto optimisation of diagnostic state observers, International Journal of Applied Mathematics and Computer Science9(3): 689–709.
Kowalczuk, Z. and Tatara, M. (2018). Analytical steady-state model of the pipeline flow process, 23rd International Conference on Methods and Models in Automation and Robotics, Mi˛edzyzdroje, Poland, pp. 1–16.
Kowalczuk, Z. and Tatara, M.S. (2016). Approximate models and parameter analysis of the flow process in transmission pipelines, in Z. Kowalczuk (Ed), Advanced and Intelligent Computations in Diagnosis and Control, Springer, Cham, pp. 239–252.
Kowalczuk, Z. and Tatara, M.S. (2017). Numerical issues and approximated models for the diagnosis of transmission pipelines, in C. Verde and L. Torres (Eds), Modeling and Monitoring of Pipelines and Networks, Springer, Cham, pp. 39–62.
Kowalczuk, Z. and Tatara, M.S. (2020). Improved model of isothermal and incompressible fluid flow in pipelines versus the Darcy–Weisbach equation and the issue of friction factor, Journal of Fluid Mechanics891(A5): 1–26.
Kowalczuk, Z. and Tatara, M.S. (2021). Analytical ‘steady-state’-based derivation and clarification of the Courant–Friedrichs–Lewy condition for pipe flow, Journal of Natural Gas Science and Engineering91(103953): 1–16.
Kowalczuk, Z., Tatara, M.S. and Stefański, T. (2018). Reduction of computational complexity in simulations of the flow process in transmission pipelines, in J.M. Kościelny et al. (Eds), Advanced Solutions in Diagnostics and Fault Tolerant Control, Springer, Cham, pp. 241–252.
Lam, M., Corredor, D., Camino, G. and Ghidaoui, M. (2019). Background pressure characterization in pipeline systems and the Rayleigh distribution, Proceedings of the 38th IAHR World Congress, Panama City, Panama, pp. 1–6.
Larson, T. (1960). Loss in pipeline carrying capacity due to corrosion and tuberculation, Journal of the American Water Works Association52(10): 1263–1270.
Liu, C., Li, Y., Fang, L., Han, J. and Xu, M. (2017). Leakage monitoring research and design for natural gas pipelines based on dynamic pressure waves, Journal of Process Control50: 66–76.
Liu, M., Zang, S. and Zhou, D. (2005). Fast leak detection and location of gas pipelines based on an adaptive particle filter, International Journal of Applied Mathematics and Computer Science15(4): 541–550.
Noguera, J.F., Torres, L., Verde, C., Guzmán, E. and Sanjuan, M. (2019). Model for the flow of a water-glycerol mixture in horizontal pipelines, 2019 4th Conference on Control and Fault Tolerant Systems (SysTol), Casablanca, Morocco, pp. 117–122.
Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, International Journal of Applied Mathematics and Computer Science22(4): 939–949, DOI: 10.2478/v10006-012-0070-1.
Osyczka, A. and Kundu, S. (1996). A modified distance method for multicriteria optimization using genetic algorithms, Computers % Industrial Engineering30(4): 871–882.
Pahlavanzadeh, F., Khaloozadeh, H. and Forouzanfar, M. (2024). Online fault detection and localization of multiple oil pipeline leaks using model-based residual generation and friction identification, International Journal of Dynamics and Control12(8): 2615–2628.
Pérez-Pérez, E., López-Estrada, F., Valencia-Palomo, G., Torres, L., Puig, V. and Mina-Antonio, J. (2021). Leak diagnosis in pipelines using a combined artificial neural network approach, Control Engineering Practice107: 104677.
Quiñones-Grueiro, M., Verde, C., Prieto-Moreno, A. and Llanes-Santiago, O. (2018). An unsupervised approach to leak detection and location in water distribution networks, International Journal of Applied Mathematics and Computer Science28(2): 283–295, DOI: 10.2478/amcs-2018-0020.
Rui, Z., Han, G., Zhang, H., Wang, S., Pu, H. and Ling, K. (2017). A new model to evaluate two leak points in a gas pipeline, Journal of Natural Gas Science and Engineering46: 491–497.
Santos-Ruiz, I., López-Estrada, F.-R., Puig, V., Torres, L., Valencia-Palomo, G. and Gómez-Peñate, S. (2021). Optimal estimation of the roughness coefficient and friction factor of a pipeline, Journal of Fluids Engineering143(5): 051304.
Thomas, L. (1949). Elliptic problems in linear difference equations over a network, Watson Scientific Computing Laboratory Report, Columbia University, New York.
Torres, L., Besançon, G. and Verde, C. (2015). Liénard type model of fluid flow in pipelines: Application to estimation, 12th IC on Electrical Engineering, Computing Science and Automatic Control, Mexico City, Mexico, pp. 1–6.
Torres, L., Verde, C. and Molina, L. (2021). Leak diagnosis for pipelines with multiple branches based on model similarity, Journal of Process Control99: 41–53.
Verde, C. and Torres, L. (2015). Referenced model-based observers for locating leaks in a branched pipeline, IFACPapersOnLine /Safeprocess48(21): 1066–1071.
Vítkovský, J.P., Simpson, A.R. and Lambert, M.F. (2000). Leak detection and calibration using transients and genetic algorithms, Journal of Water Resources Planning and Management126(4): 262–265.
Wiid, A., le Roux, J. and Craig, I. (2020). Modelling of methane-rich gas pipeline networks for simulation and control, Journal of Process Control92: 234–245.