Have a personal or library account? Click to login

Decentralized Sliding Mode Control Using an Event–Triggered Mechanism for Discrete Interconnected Hammerstein Systems

Open Access
|Oct 2024

References

  1. Adamiak, K. and Bartoszewicz, A. (2021). Reference trajectory based quasi-sliding mode with event-triggered control, Energies 14(7236): 1–13.
  2. Bai, E.W. (2010). Block-oriented Nonlinear system Identification, Springer Verlag, Berlin/Heidelberg.
  3. Benyazid, Y. and Nouri, A.S. (2023). A discrete integral sliding manifold for a nonlinear system with time delay: An event-triggered scheme, Mathematics 11(2326): 1–19.
  4. Chen, S. and Harris, C.J. (2014). Complex-valued b-spline neural networks for modeling and inverting Hammerstein systems, IEEE Transactions on Neural Networks and Learning Systems 25(9): 1673–1685.
  5. Elloumi, M. and Kamoun, S. (2015). Optimal predictor and implicit self-tuning regulator for a class of Hammerstein large-scale systems, International Conference on Systems and Control, Sousse, Tunisia pp. 417–423.
  6. Elloumi, M. and Kamoun, S. (2016). Design of self-tuning regulator for large-scale interconnected Hammerstein systems, Journal of Control Science and Engineering 2016(13): 1–14, Article no. 6769714, DOI:10.1155/2016/6769714.
  7. Elloumi, M. and Kamoun, S. (2017). Adaptive control scheme for large-scale interconnected systems described by Hammerstein models, Asian Journal of Control 19(3): 1–14.
  8. Gong, S. and Zheng, M. (2023). Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus, International Journal of Applied Mathematics and Computer Science 33(3): 439–448, DOI: 10.34768/amcs-2023-0032.
  9. Hong, X. and Chen, S. (2012). Modelling and control of Hammerstein system using B-spline approximation and the inverse of de Boor algorithm, International Journal of Systems Science 43(10): 1976–1984.
  10. Hong, X. and Mitchell, R.J. (2007). Hammerstein model identification algorithm using Bezier–Bernstein approximation, IET Control Theory % Applications 1(4): 1149––1159.
  11. Kamoun, S. and Kamoun, M. (2016). A new decentralized implicit adaptive regulator for large-scale systems described by discrete-time state-space mathematical models, International Journal of Control Automatic Systems 14(3): 733–742.
  12. Labibi, B. (2005). Decentralized control via disturbance attenuation and eigenstructure assignment, FAC Elsevier Publications 38(1): 63–68, DOI:10.3182/20050703-6-CZ-1902.01551.
  13. Menghua, C. (2023). Input-output finite-time sliding mode control of discrete time-varying systems under an adaptive event-triggered mechanism, IEEE Access 11: 3555–3563, DOI:10.1109/ACCESS.2023.3235009.
  14. Nagai, S. and Oya, H. (2014). Synthesis of decentralized variable gain robust controllers for large-scale interconnected systems with structured uncertainties, Journal of Control Science and Engineering 2014(1): 848465, DOI: 10.1155/2014/848465.
  15. Nan, J. and Bin, J. (2021). Decentralised state feedback stabilisation for nonlinear interconnected systems using sliding mode control, International Journal of Systems Science 53(5): 1017–1030.
  16. Ordaz, P., Romero-Trejo, H., Cuvas, C. and Sandre, O. (2024). Dynamic sliding mode control based on a full-order observer: Underactuated electro-mechanical system regulation, International Journal of Applied Mathematics and Computer Science 34(1): 29–43, DOI: 10.61822/amcs-2024-0003.
  17. Patel, A. and Purwar, S. (2023). Design of event trigger based multirate sliding mode load frequency controller for interconnected power system, ISA Transactions 137: 457–470, DOI:10.1016/j.isatra.2022.12.001.
  18. Rayouf, Z. and Braiek, N.B. (2019). A new Hammerstein model control strategy: feedback stabilization and stability analysis, International Journal of Dynamics and Control 7(4): 1453–1461.
  19. Thien, T.R. and Kim, Y. (2018). Decentralized formation flight via PID and integral sliding mode control, Aerospace Science and Technology 81: 322–332, DOI:10.1016/j.ast.2018.08.011.
  20. Vineet, P. and Utkal, M. (2022). Modeling and parametric identification of Hammerstein systems with time delay and asymmetric dead-zones using fractional differential equations, Mechanical Systems and Signal Processing B 167, Article no. 108568, DOI:10.1016/j.ymssp.2021.108568.
  21. Xiaojie, S. and Yong, D.S. (2017). Event-triggered sliding mode control for multi-area power systems, IEEE Transactions on Industrial Electronics 64(8): 6732–6741, DOI: 10.1109/TIE.2017.2677357.
  22. Yang, Y. and Yue, Q. (2021). Event-trigger-based recursive sliding-mode dynamic surface containment control with nonlinear gains for nonlinear multiagent systems, Information Sciences 560: 202–216, DOI:10.1016/j.ins.2021.01.072.
  23. Yiqun, B. and Yan, J. (2023). Parameter estimation of fractional-order Hammerstein state space system based on the extended Kalman filter, International Journal of Adaptive Control and Signal Processing 37(7): 1827–1846, DOI:10.1002/acs.3602.
  24. Yueheng, D. and Jiang, B. (2022). System structure based decentralized sliding mode output tracking control for nonlinear interconnected systems, International Journal of Robust and Nonlinear Control 33(3): 1–16, DOI:10.1002/rnc.6467.
  25. Yueheng, D. and Spurgeon, S.K. (2022a). Decentralised output tracking of interconnected systems with unknown
  26. interconnections using sliding mode control, International Journal of Systems Science 54(2): 283–294, DOI:10.1080/00207721.2022.2114115.
  27. Yueheng, D. and Spurgeon, S.K. (2022b). Sliding mode based decentralized tracking control of underactuated four-body systems, Asian Control Conference, Jeju, Korea, pp. 1765–1770, DOI:10.23919/ASCC56756.2022.9828154.
  28. Yufei, N. and Qiang, L. (2023). Event-triggered sliding mode control for networked linear systems, Journal of the Franklin Institute 360(3): 1978–1999.
  29. Znidi, A., Dehri, K. and Nouri, A.S. (2022). Discrete adaptive second order sliding mode control for uncertain Hammerstein nonlinear systems, 19th International Multi-Conference on Systems, Signals and Devices (SSD), S´etif, Algeria, pp. 1281–1287, DOI:10.1109/SSD54932.2022.9955951.
DOI: https://doi.org/10.61822/amcs-2024-0025 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 349 - 360
Submitted on: Dec 28, 2023
Accepted on: Jun 5, 2024
Published on: Oct 1, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Aicha Znidi, Ahmed Saïd Nouri, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.