Andresini, G., Appice, A., De Rose, L. and Malerba, D. (2021). GAN augmentation to deal with imbalance in imaging-based intrusion detection, Future Generation Computer Systems123(2021): 108–127, DOI:10.1016/j.future.2021.04.017.
Bedi, P., Gupta, N. and Jindal, V. (2021). I-SIAMIDS: An improved SIAM-IDS for handling class imbalance in network-based intrusion detection systems, Applied Intelligence51(2): 1133–1151.
Brunner, C., Ko, A. and Fodor, S. (2022). An autoencoder-enhanced stacking neural network model for increasing the performance of intrusion detection, Journal of Artificial Intelligence and Soft Computing Research12(2): 149–163.
Cui, J., Zong, L., Xie, J. and Tang, M. (2023). A novel multi-module integrated intrusion detection system for high-dimensional imbalanced data, Applied Intelligence53(1): 272–288.
Fu, W., Qian, L. and Zhu, X. (2021). GAN-based intrusion detection data enhancement, Proceedings of the 33rd Chinese Control and Decision Conference (CCDC 2021), Kunming, China, pp. 2739–2744.
Gelenbe, E. and Nakip, M. (2023). IoT network cybersecurity assessment with the associated random neural network, IEEE Access11: 85501–85512, DOI: 10.1109/ACCESS.2023.3297977.
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014). Generative adversarial nets, 28th Conference on Advances in Neural Information Processing Systems (NIPS 2014), Montreal, Canada, pp. 2672–2680.
Gupta, N., Jindal, V. and Bedi, P. (2022). CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance in network-based intrusion detection systems, Computers & Security112(2022): 102499, DOI:10.1016/j.cose.2021.102499.
Jabbar, A., Li, X. and Omar, B. (2021). A survey on generative adversarial networks: Variants, applications, and training, ACM Computing Surveys54(8): 1–49.
Kanna, P.R. and Santhi, P. (2021). Unified deep learning approach for efficient intrusion detection system using integrated spatial-temporal features, Knowledge-Based Systems226: 107132.
Kumar, Y., Chouhan, L. and Subba, B. (2021). Deep learning techniques for anomaly based intrusion detection system: A survey, in S. Paul and J. Verma (Eds), 2021 International Conference on Computational Performance Evaluation (COMPE-2021), Shillong, India, pp. 915–920.
Laghrissi, F., Douzi, S., Douzi, K. and Hssina, B. (2021). Intrusion detection systems using long short-term memory (LSTM), Journal of Big Data8(1): 65.
Liao, D., Zhou, R., Li, H., Zhang, M. and Chen, X. (2022). GE-IDS: An intrusion detection system based on grayscale and entropy, Peer-to-Peer Networking and Applications15(3): 1521–1534.
Liu, C., Antypenko, R., Sushko, I. and Zakharchenko, O. (2022). Intrusion detection system after data augmentation schemes based on the VAE and CVAE, IEEE Transactions on Reliability71(2): 1000–1010.
Nosouhian, S., Nosouhian, F. and Khoshouei, A.K. (2021). A review of recurrent neural network architecture for sequence learning: Comparison between LSTM and GRU, Preprints.org: 202107.0252, DOI: 10.20944/preprints202107.0252.v1.
Oksuz, K., Cam, B.C., Kalkan, S. and Akbas, E. (2021). Imbalance problems in object detection: A review, IEEE Transactions on Pattern Analysis and Machine Intelligence43(10): 3388–3415.
Radford, A., Metz, L. and Chintala, S. (2016). Unsupervised representation learning with deep convolutional generative adversarial networks, ArXiv: 1511.06434.
Sabahi, F. and Movaghar, A. (2008). Intrusion detection: A survey, 2008 3rd International Conference on Systems and Networks Communications, Slema,Malta, pp. 23–26, DOI: 10.1109/ICSNC.2008.44.
Sun, H., Wan, L., Liu, M. and Wang, B. (2023). Few-shot network intrusion detection based on prototypical capsule network with attention mechanism, Plos ONE18(4): e0284632.
Thakkar, A. and Lohiya, R. (2023). Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system, Information Fusion90(2023): 353–363, DOI: 10.1016/j.inffus.2022.09.026.
Wang, W., Sheng, Y., wang, J., Zeng, X., Ye, X., Huang, Y. and Zhu, M. (2018). HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection, IEEE Access6(2018): 1792–1806, DOI: 10.1109/ACCESS.2017.2780250.
Wang, Z., Liu, Y., He, D. and Chan, S. (2021). Intrusion detection methods based on integrated deep learning model, Computers & Security103(2021): 102177.
Xiao, Y., Xing, C., Zhang, T. and Zhao, Z. (2019). An intrusion detection model based on feature reduction and convolutional neural networks, IEEE Access7: 42210–42219, DOI: 10.1109/ACCESS.2019.2904620.
Yuan, L., Yu, S., Yang, Z., Duan, M. and Li, K. (2023). A data balancing approach based on generative adversarial network, Future Generation Computer Systems141(2023): 768–776.
Zhang, H., Ge, L. and Wang, Z. (2022a). A high performance intrusion detection system using LightGBM based on oversampling and undersampling, in D. Huang et al. (Eds), Intelligent Computing Theories and Application (ICIC 2022), Lecture Notes in Computer Science, Vol. 13393, Springer, Cham, pp. 638–652, DOI: 10.1007/978-3-031-13870-6 53.
Zhou, Y., Cheng, G., Jiang, S. and Dai, M. (2020). Building an efficient intrusion detection system based on feature selection and ensemble classifier, Computer Networks174(2020): 107247, DOI: 10.1016/j.comnet.2020.107247.
Zou, L., Luo, X., Zhang, Y., Yang, X. and Wang, X. (2023). HC-DTTSVM: A network intrusion detection method based on decision tree twin support vector machine and hierarchical clustering, IEEE Access11(2023): 21404–21416, DOI: 10.1109/ACCESS.2023.3251354.