Arjovsky, M., Chintala, S. and Bottou, L. (2017). Wasserstein generative adversarial networks, International Conference on Machine Learning, Sydney, Australia, pp. 214–223.
Barua, S., Islam, M.M. and Murase, K. (2013). PROWSYN: Proximity weighted synthetic oversampling technique for imbalanced data set learning, Advances in Knowledge Discovery and Data Mining: 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, pp. 317–328.
Bourou, S., El Saer, A., Velivassaki, T.-H., Voulkidis, A. and Zahariadis, T. (2021). A review of tabular data synthesis using GANs on an IDS dataset, Information12(09): 375.
Budach, L., Feuerpfeil, M., Ihde, N., Nathansen, A., Noack, N., Patzlaff, H., Naumann, F. and Harmouch, H. (2022). The effects of data quality on machine learning performance, arXiv: 2207.14529.
Chaabane, I., Guermazi, R. and Hammami, M. (2020). Enhancing techniques for learning decision trees from imbalanced data, Advances in Data Analysis and Classification14(3): 1–69.
Chen, J., Huang, H., Cohn, A.G., Zhang, D. and Zhou, M. (2022). Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning, International Journal of Mining Science and Technology32(2): 309–322.
Chen, J., Yan, Z., Lin, C., Yao, B. and Ge, H. (2023). Aero-engine high speed bearing fault diagnosis for data imbalance: A sample enhanced diagnostic method based on pre-training WGAN-GP, Measurement213(7): 112709.
Cui, J., Zong, L., Xie, J. and Tang, M. (2023). A novel multi-module integrated intrusion detection system for high-dimensional imbalanced data, Applied Intelligence53(1): 272–288.
Derrac, J., Garcia, S., Sanchez, L. and Herrera, F. (2015). Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework, Journal of Multiple-Valued Logic and Soft Computing17(2–3): 255–287.
Douzas, G. and Bacao, F. (2018). Effective data generation for imbalanced learning using conditional generative adversarial networks, Expert Systems with Applications91(1): 464–471.
Fernández, A., Garcia, S., Herrera, F. and Chawla, N.V. (2018). Smote for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary, Journal of Artificial Intelligence Research61: 863–905.
Freund, Y. and Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences55(1): 119–139.
García, S., Luengo, J. and Herrera, F. (2016). Tutorial on practical tips of the most influential data preprocessing algorithms in data mining, Knowledge-Based Systems98(7): 1–29.
Gazzah, S. and Amara, N.E.B. (2008). New oversampling approaches based on polynomial fitting for imbalanced data sets, 2008 8th IAPR International Workshop on Document Analysis Systems, Nara, Japan, pp. 677–684.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014). Generative adversarial nets, Advances in Neural Information Processing Systems27: 2672–2680.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A.C. (2017). Improved training of Wasserstein GANs, Advances in Neural Information Processing Systems30: 5767–5777.
Hernandez, M., Epelde, G., Alberdi, A., Cilla, R. and Rankin, D. (2022). Synthetic data generation for tabular health records: A systematic review, Neurocomputing493(27): 28–45.
James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications to R, 2nd Edn, Springer, New York.
Janicka, M., Lango, M. and Stefanowski, J. (2019). Using information on class interrelations to improve classification of multiclass imbalanced data: A new resampling algorithm, International Journal of Applied Mathematics and Computer Science29(4): 769–781, DOI: 10.2478/amcs-2019-0057.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection, 14th International Joint Conference on Artificial Intelligence (IJCAI), Montreal, Canada, pp. 1137–1145.
Kovács, G. (2019). An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets, Applied Soft Computing83(9): 105662.
Liu, X.-Y., Wu, J. and Zhou, Z.-H. (2008). Exploratory undersampling for class-imbalance learning, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics39(2): 539–550.
López, V., Fernández, A., García, S., Palade, V. and Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics, Information Sciences250(33): 113–141.
Moreo, A., Esuli, A. and Sebastiani, F. (2016). Distributional random oversampling for imbalanced text classification, Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Pisa, Italy, pp. 805–808.
Napierala, K. and Stefanowski, J. (2016). Types of minority class examples and their influence on learning classifiers from imbalanced data, Journal of Intelligent Information Systems46: 563–597.
Nik, A.H.Z., Riegler, M.A., Halvorsen, P. and Storås, A.M. (2023). Generation of synthetic tabular healthcare data using generative adversarial networks, International Conference on Multimedia Modeling, Bergen, Norway, pp. 434–446.
Ohsaki, M., Wang, P., Matsuda, K., Katagiri, S., Watanabe, H. and Ralescu, A. (2017). Confusion-matrix-based kernel logistic regression for imbalanced data classification, IEEE Transactions on Knowledge and Data Engineering29(9): 1806–1819.
Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H. and Kim, Y. (2018). Data synthesis based on generative adversarial networks, Proceedings of the VLDB Endowment11(10): 1071–1083.
Park, S. and Park, H. (2021). Combined oversampling and undersampling method based on slow-start algorithm for imbalanced network traffic, Computing103(3): 401–424.
Ren, J., Wang, Y., Cheung, Y.-m., Gao, X.-Z. and Guo, X. (2023). Grouping-based oversampling in kernel space for imbalanced data classification, Pattern Recognition133(1): 108992.
Sáez, J.A., Luengo, J., Stefanowski, J. and Herrera, F. (2015). SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering, Information Sciences291(2): 184–203.
Sun, B., Zhou, Q., Wang, Z., Lan, P., Song, Y., Mu, S., Li, A., Chen, H. and Liu, P. (2023). Radial-based undersampling approach with adaptive undersampling ratio determination, Neurocomputing553(39): 126544.
Sun, Y., Wong, A.K. and Kamel, M.S. (2009). Classification of imbalanced data: A review, International Journal of Pattern Recognition and Artificial Intelligence23(04): 687–719.
Woods, K.S., Doss, C.C., Bowyer, K.W., Solka, J.L., Priebe, C.E. and Kegelmeyer Jr, W.P. (1993). Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography, International Journal of Pattern Recognition and Artificial Intelligence7(06): 1417–1436.
Xie, Y. and Zhang, T. (2018). Imbalanced learning for fault diagnosis problem of rotating machinery based on generative adversarial networks, 2018 37th Chinese Control Conference (CCC), Wuhan, China, pp. 6017–6022.
Xu, L., Skoularidou, M., Cuesta-Infante, A. and Veeramachaneni, K. (2019). Modeling tabular data using conditional GAN, Advances in Neural Information Processing Systems32: 7335–7345.
Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O. and Li, H. (2017). High-resolution image inpainting using multi-scale neural patch synthesis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 6721–6729.
Zhang, M., Wan, X., Gang, L., Lv, X., Wu, Z. and Liu, Z. (2021). An automated driving strategy generating method based on WGAIL–DDPG, International Journal of Applied Mathematics and Computer Science31(3): 461–470, DOI: 10.34768/amcs-2021-0031.
Zhang, Y., Liu, Y., Wang, Y. and Yang, J. (2023). An ensemble oversampling method for imbalanced classification with prior knowledge via generative adversarial network, Chemometrics and Intelligent Laboratory Systems235(4): 104775.
Zhao, Y., Li, H., Bissyandé, T.F., Klein, J. and Grundy, J. (2021). On the impact of sample duplication in machine-learning-based android malware detection, ACM Transactions on Software Engineering and Methodology30(3): 1–38.
Zhao, Z., Kunar, A., Birke, R. and Chen, L.Y. (2021). CTAB-GAN: Effective table data synthesizing, Asian Conference on Machine Learning, pp. 97–112, (virtual).
Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L. and Ma, Z. (2020a). Conditional wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification, Information Sciences512(7): 1009–1023.
Zhu, B., Pan, X., vanden Broucke, S. and Xiao, J. (2022). A GAN-based hybrid sampling method for imbalanced customer classification, Information Sciences609(28): 1397–1411.