Chernick, M.R., González-Manteiga, W., Crujeiras, R.M. and Barrios, E.B. (2011). Bootstrap methods, in M. Lovric (Ed.), International Encyclopedia of Statistical Science, Springer, Berlin/Heidelberg, pp. 169–174.
Couso, I. and Dubois, D. (2014). Statistical reasoning with set-valued information: Ontic vs. epistemic views, International Journal of Approximate Reasoning55(7): 1502–1518.
Gil, M.A., Lubiano, M.A., Montenegro, M. and López, M.T. (2002). Least squares fitting of an affine function and strength of association for interval-valued data, Metrika56(2): 97–111.
Gil, M., Montenegro, M., González-Rodríguez, G., Colubi, A. and Casals, M. (2006). Bootstrap approach to the multi-sample test of means with imprecise data, Computational Statistics and Data Analysis51(1): 148–162.
González-Rodríguez, G., Montenegro, M., Colubi, A. and Gil, M. (2006). Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets and Systems157(19): 2608–2613.
Grzegorzewski, P. (2008). Trapezoidal approximations of fuzzy numbers preserving the expected interval—Algorithms and properties, Fuzzy Sets and Systems159(11): 1354–1364.
Grzegorzewski, P. (2020). Permutation k-sample goodness-of-fit test for fuzzy data, 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, pp. 1–8.
Grzegorzewski, P. and Gadomska, O. (2021). Nearest neighbor tests for fuzzy data, 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, pp. 1–6.
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2019). Flexible bootstrap based on the canonical representation of fuzzy numbers, Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019), Prague, Czech Republic, pp. 490–497.
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020a). Flexible bootstrap for fuzzy data based on the canonical representation, International Journal of Computational Intelligence Systems13(1): 1650–1662.
Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020b). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
Grzegorzewski, P. and Romaniuk, M. (2021). Epistemic bootstrap for fuzzy data, Joint Proceedings of the IFSAEUSFLAT- AGOP 2021 Conferences, Bratislavia, Slovakia, pp. 538–545.
Grzegorzewski, P. and Romaniuk, M. (2022a). Bootstrap methods for epistemic fuzzy data, International Journal of Applied Mathematics and Computer Science32(2): 285–297, DOI: 10.34768/amcs-2022-0021.
Grzegorzewski, P. and Romaniuk, M. (2022b). Bootstrapped Kolmogorov–Smirnov test for epistemic fuzzy data, in D. Ciucci et al. (Eds), Information Processing and Management of Uncertainty in Knowledge-Based Systems, Springer International Publishing, Cham, pp. 494–507.
Hesamian, G., Akbari, M.G. and Shams, M. (2023). A goodness-of-fit test based on fuzzy random variables, Fuzzy Information and Engineering15(1): 55–68.
Lubiano, M.A., Salas, A., Carleos, C., de la Rosa de Sáa, S. and Gil, M.A. (2017). Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, International Journal of Approximate Reasoning88: 128–147.
Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika59: 31–49.
Romaniuk, M. and Grzegorzewski, P. (2023). Resampling fuzzy numbers with statistical applications: FuzzyResampling package, The R Journal15(1): 271–283.
Romaniuk, M., Grzegorzewski, P. and Parchami, A. (2023). FuzzySimRes: Simulation and Resampling Methods for Epistemic Fuzzy Data, R package, Version 0.2.0, https://CRAN.R-project.org/package=FuzzySimRes.
Romaniuk, M. and Hryniewicz, O. (2021). Discrete and smoothed resampling methods for interval-valued fuzzy numbers, IEEE Transactions on Fuzzy Systems29(3): 599–611.
Trutschnig, W., González-Rodríguez, G., Colubi, A. and Gil, M.A. (2009). A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread, Information Sciences179(23): 3964–3972.