Have a personal or library account? Click to login

Reducing the Number of Luts for Mealy FSMS with State Transformation

Open Access
|Mar 2024

References

  1. AMD (2023a). Corporate website, http://www.amd.com, (formerly Xilinx).
  2. AMD (2023b). VC709 Evaluation Board for the Virtex-7 FPGA, AMD, San Jose, https://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf.
  3. AMD (2019). Virtex-7 Family Overview, AMD, San Jose, http://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf.
  4. Anceau, F. (1986). The Architecture of Microprocessors, Addison-Wesley, Workingham.
  5. Baranov, S. (1994). Logic Synthesis of Control Automata, Kluwer Academic Publishers, Dordrecht.
  6. Baranov, S. (2008). Logic and System Design of Digital Systems, TUT Press, Tallinn.
  7. Barkalov, A.A., Titarenko, L. and Mielcarek, K. (2022). Reducing LUT count for Mealy FSMs with transformation of states, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41(5): 1400–1411.
  8. Barkalov, A.A. and Barkalov Jr., A.A. (2005). Design of Mealy finite-state machines with the transformation of object codes, International Journal of Applied Mathematics and Computer Science 15(1): 151–158.
  9. Barkalov, A., Titarenko, L. and Krzywicki, K. (2021). Structural decomposition in FSM design: Roots, evolution, current state—A review, Electronics 10(10): 44.
  10. Barkalov, A., Titarenko, L., Krzywicki, K. and Saburova, S. (2020a). Improving the characteristics of multi-level LUT-based Mealy FSMs, Electronics 9(11): 34.
  11. Barkalov, A., Titarenko, L., Mielcarek, K. and Chmielewski, S. (2020b). Logic Synthesis for FPGA-Based Control Units—Structural Decomposition in Logic Design, Springer, Berlin, DOI: 10.1007/978-3-030-38295-7.
  12. Barkalov, O., Titarenko, L. and Mielcarek, K. (2018). Hardware reduction for LUT-based Mealy FSMs, International Journal of Applied Mathematics and Computer Science 28(3): 595–607, DOI: 10.2478/amcs-2018-0046.
  13. Barkalov, O., Titarenko, L. and Mielcarek, K. (2020c). Improving characteristics of LUT-based Mealy FSMs, International Journal of Applied Mathematics and Computer Science 30(4): 745–759, DOI: 10.34768/amcs-2020-0055.
  14. Borowczak, M. and Vemuri, R. (2013). Secure controllers: Requirements of S*FSM, Midwest Symposium on Circuits and Systems, Washington DC, USA, pp. 553–557.
  15. Brayton, R. and Mishchenko, A. (2010). ABC: An academic industrial-strength verification tool, in T. Touili et al. (Eds), Computer Aided Verification, Springer, Berlin/Heidelberg, pp. 24–40.
  16. Chapman, K. (2014). Multiplexer design techniques for datapath performance with minimized routing resources, Xilinx All Programmable, https://docs.xilinx.com/v/u/en-US/xapp522-mux-design-techniques.
  17. Feng, W., Greene, J. and Mishchenko, A. (2018). Improving FPGA performance with a S44 LUT structure, Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, USA, pp. 61–66.
  18. Gajski, D.D., Abdi, S., Gerstlauer, A. and Schirner, G. (2009). Embedded System Design: Modeling, Synthesis and Verification, 1st Edn, Springer, Berlin.
  19. Intel (2023). Corporate website, http://www.intel.com, (formerly Altera).
  20. Islam, M.M., Hossain, M., Shahjalal, M., Hasan, M.K. and Jang, Y.M. (2020). Area-time efficient hardware implementation of modular multiplication for elliptic curve cryptography, IEEE Access 8: 73898–73906.
  21. Klimovich, A.S. and Solov’ev, V.V. (2012). Minimization of Mealy finite-state machines by internal states gluing, International Journal of Computer and Systems Sciences 51(2): 244–255, DOI: 10.1134/S1064230712010091.
  22. Krishnamoorthy, S. and Tessier, R. (2003). Technology mapping algorithms for hybrid FPGAs containing lookup tables and PLAs, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(5): 545–559.
  23. Kubica, M. and Kania, D. (2017). Area-oriented technology mapping for LUT-based logic blocks, International Journal of Applied Mathematics and Computer Science 27(1): 207–222, DOI: 10.1515/amcs-2017-0015.
  24. Kubica, M., Kania, D. and Kulisz, J. (2019). A technology mapping of FSMs based on a graph of excitations and outputs, IEEE Access 7: 16123–16131.
  25. Kubica, M., Opara, A. and Kania, D. (2021). Technology Mapping for LUT-Based FPGA, Springer, Cham.
  26. LGSynth93 (1993). Benchmark suite, https://ddd.fit.cvut.cz/www/prj/Benchmarks/.
  27. Ling, A., Singh, D. and Brown, S. (2005). FPGA technology mapping: A study of optimality, Proceedings of the 42nd Annual Design Automation Conference, Anaheim, USA, pp. 427–432.
  28. Machado, L. and Cortadella, J. (2020). Support-reducing decomposition for FPGA mapping, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39(1): 213–224.
  29. Marwedel, P. (2018). Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things, 3rd Edn, Springer, Cham.
  30. Maxfield, C. (2008). FPGAs: Instant Access, Newnes, Burlington.
  31. Micheli, G.D. (1994). Synthesis and Optimization of Digital Circuits, McGraw-Hill, New York.
  32. Microchip (2023). Corporate website, http://www.microchip.com, (formerly Atmel).
  33. Milik, A. (2016). On hardware synthesis and implementation of PLC programs in FPGAs, Microprocors and Microsystems 44(C): 2–16, DOI: 10.1016/j.micpro.2016.02.003.
  34. Minns, P. and Elliot, I. (2008). FSM-based Digital Design Using Verilog HDL, Wiley, Chichester.
  35. Ruiz-Rosero, J., Ramirez-Gonzalez, G. and Khanna, R. (2019). Field programmable gate array applications—A scientometric review, Computation 7(4): 63.
  36. Scholl, C. (2001). Functional Decomposition with Application to FPGA Synthesis, Kluwer Academic Publishers, Boston.
  37. Senhadji-Navaro, R. and Garcia-Vargas, I. (2015). High-speed and area-efficient reconfigurable multiplexer bank for RAM-based finite state machine implementations, Journal of Circuits, Systems and Computers 24(07): 1550101.
  38. Senhadji-Navarro, R. and Garcia-Vargas, I. (2018). High-performance architecture for binary-tree-based finite state machines, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37(4): 796–805.
  39. Sentowich, E., Singh, K., Lavango, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P., Bryton, R. and Sangiovanni-Vincentelli, A. (1992a). SIS: A system for sequential circuit synthesis, Technical report, University of California, Berkeley.
  40. Sentowich, E., Singh, K., Lavango, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Savoj, H., Stephan, P., Bryton, R. and Sangiovanni-Vincentelli, A. (1992b). SIS: A system for sequential circuit synthesis, Proceedings of the International Conference of Computer Design (ICCD’92), Berkeley, USA, pp. 328–333.
  41. Skliarova, I., Sklyarov, V. and Sudnitson, A. (2012). Design of FPGA-Based Circuits Using Hierarchical Finite State Machines, TUT Press, Tallinn.
  42. Sklyarov, V., Skliarova, I., Barkalov, A. and Titarenko, L. (2014). Synthesis and Optimization of FPGA-Based Systems, Springer, Cham.
  43. Solovjev, V. and Czyzy, M. (1999). Refined CPLD macrocells architecture for effective FSM implementation, Proceedings of the 25th EUROMICRO Conference, Milan, Italy, Vol. 1, pp. 102–109.
  44. Sutter, G., Todorovich, E., López-Buedo, S. and Boemo, E. (2002). Low-power FSMs in FPGA: Encoding alternatives, in B. Hochet et al. (Eds), Integrated Circuit Design: Power and Timing Modeling, Optimization and Simulation, Springer-Verlag, Berlin/Heidelberg, pp. 363–370.
  45. Tiwari, A. and Tomko, K. (2004). Saving power by mapping finite-state machines into embedded memory blocks in FPGAs, Design, Automation and Test in Europe Conference and Exhibition, Paris, France, Vol. 2, pp. 916–921.
  46. Trimberger, S. (2015). Three ages of FPGA: A retrospective on the first thirty years of FPGA technology, IEEE Proceedings 103(3): 318–331.
  47. Vivado (2023). Design tools documentation, https://www.xilinx.com/products/design-tools/vivado.html.
  48. Wolf, W. (2004). FPGA-Based System Design, Prentice Hall PTR, Upper Saddle River.
  49. Zgheib, G. and Ouaiss, I. (2015). Enhanced technology mapping for FPGAs with exploration of cell configurations, Journal of Circuits, Systems and Computers 24(3): 1550039.
DOI: https://doi.org/10.61822/amcs-2024-0012 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 167 - 178
Submitted on: Apr 28, 2023
Accepted on: Nov 14, 2023
Published on: Mar 26, 2024
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Alexander Barkalov, Larysa Titarenko, Kamil Mielcarek, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.