Abo-Dahab, S.M. (2020). A two-temperature generalized magneto-thermoelastic formulation for a rotating medium with thermal shock under hydrostatic initial stress, Continuum Mechanics and Thermodynamics 32(3): 883–900.
Ali, G. and Romano, V. (2017). Existence and uniqueness for a two-temperature energy-transport model for semiconductors, Journal of Mathematical Analysis and Applications 449(2): 1248–1264.
Barabasz, B., Gajda-Zagórska, E., Migórski, S., Paszyński, M., Schaefer, R. and Smołka, M. (2014). A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science 24(4): 865–886, DOI: 10.2478/amcs-2014-0064.
Bazarra, N., Campo, M. and Fernández, J.R. (2019). A thermoelastic problem with diffusion, microtemperatures, and microconcentrations, Acta Mechanica 230: 31–48.
Bazarra, N., Fernández, J.R., Magaña, A. and Quintanilla, R. (2020). Numerical analysis of a dual-phase-lag model involving two temperatures, Mathematical Methods in the Applied Sciences 43(5): 2759–2771.
Campo, M., Copetti, M.I., Fernández, J.R. and Quintanilla, R. (2022). On existence and numerical approximation in phase-lag thermoelasticity with two temperatures, Discrete and Continuous Dynamical Systems B 27(4): 2221–2247.
Campo, M., Fernández, J., Kuttler, K., Shillor, M. and Viano, J. (2006). Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Computer Methods in Applied Mechanics and Engineering 196(1): 476–488.
Chen, P., Gurtin, M.E. and Williams, W. (1969). On the thermodynamics of non-simple materials with two temperatures, Zeitschrift fur angewandte Mathematik und Physik 20: 107–112.
Ciarlet, P. (1993). Basic error estimates for elliptic problems, in P.G. Ciarlet and J. Lions (Eds), Handbook of Numerical Analysis, Springer-Verlag, Berlin, pp. 17–351.
Clement, P. (1975). Approximation by finite element functions using local regularization, RAIRO Mathematical Modeling and Numerical Analysis 9(R2): 77–84.
D’Apice, C., Zampoli, V. and Chiriţă, S. (2020). On the wave propagation in the thermoelasticity theory with two temperatures, Journal of Elasticity 140(2): 257–272.
Feng, B. and Apalara, T.A. (2019). Optimal decay for a porous elasticity system with memory, Journal of Mathematical Analysis and Applications 470(2): 1108–1128.
Feng, B. and Yin, M. (2019). Decay of solutions for a one-dimensional porous elasticity system with memory: The case of non-equal wave speeds, Mathematics and Mechanics of Solids 24(8): 2361–2373.
Fernández, J.R. and Quintanilla, R. (2021a). Two-temperatures thermo-porous-elasticity with microtemperatures, Applied Mathematical Letters 111: 106628.
Fernández, J.R. and Quintanilla, R. (2021b). Uniqueness and exponential instability in a new two-temperature thermoelastic theory, AIMS Mathematics 6(6): 5440–5451.
Gruais, I. and Poliševski, D. (2017). Model of two-temperature convective transfer in porous media, Zeitschrift fur angewandte Mathematik und Physik 68(6): 143.
Ieşan, D. (2007). Thermoelasticity of bodies with microstructure and microtemperatures, International Journal of Solids and Structures 44(25–26): 8648–8653.
Kumar, K., Prasad, R. and Kumar, R. (2020). Thermoelastic interactions on hyperbolic two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity, European Journal of Mechanics A: Solids 82: 104007.
Leseduarte, M., Magaña, A.M. and Quintanilla, R. (2010). On the time decay of solutions in porous-thermo-elasticity of type II, Discrete and Continuous Dynamical Systems B 13(2): 375–391.
Magaña, A., Miranville, A. and Quintanilla, R. (2020). Exponential decay of solutions in type II thermo-porous-elasticity with quasi-static microvoids, Journal of Mathematical Analysis and Applications 492(2): 124504.
Magaña, A. and Quintanilla, R. (2018). Exponential stability in type III thermoelasticity with microtemperatures, Zeitschrift fur angewandte Mathematik und Physik 69(5): 129.
Makki, A., Miranville, A. and Sadaka, G. (2019). On the nonconserved Caginalp phase-field system based on the Maxwell–Cattaneo law with two temperatures and logarithmic potentials, Discrete and Continuous Dynamical Systems Series B 24(3): 1341–1365.
Makki, A., Miranville, A. and Sadaka, G. (2021). On the conserved Caginalp phase-field system with logarithmic potentials based on the Maxwell–Cattaneo law with two temperatures, Applied Mathematics and Optimations 84(2): 1285–1316.
Miranville, A. and Quintanilla, R. (2016). On the Caginalp phase-field systems with two temperatures and the Maxwell–Cattaneo law, Mathematical Methods in the Applied Sciences 39(15): 4385–4397.
Miranville, A. and Quintanilla, R. (2019). Exponential decay in one-dimensional type III thermoelasticity with voids, Applied Mathematical Letters 94: 30–37.
Miranville, A. and Quintanilla, R. (2020). Exponential decay in one-dimensional type II thermoviscoelasticity with voids, Journal of Computational and Applied Mathematics 368: 112573.
Mukhopadhyay, S., Picard, R., Trostorff, S. and Waurick, M. (2017). A note on a two-temperature model in linear thermoelasticity, Mathematics and Mechanics of Solids 22(5): 905–918.
Pamplona, P., Muñoz-Rivera, J.M. and Quintanilla, R. (2011). On the decay of solutions for porous-elastic systems with history, Journal of Mathematical Analysis and Applications 379(2): 682—705.
Passarella, F., Tibullo, V. and Viccione, G. (2017). Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures, Meccanica 52: 3033–3041.
Riha, P. (1976). On the microcontinuum model of heat conduction in materials with inner structure, International Journal of Engineering Science 14(6): 529–535.
Sarkar, N. and Mondal, S. (2020). Thermoelastic plane waves under the modified Green–Lindsay model with two-temperature formulation, Zeitschrift fur Angewandte Mathematik und Mechanik 100(11): e201900267.
Sellitto, A., Carlomagno, I. and Domenico, M.D. (2021). Nonlocal and nonlinear effects in hyperbolic heat transfer in a two-temperature model, Zeitschrift fur Angewandte Mathematik und Mechanik 72(1): 7.
Youssef, H. and Elsibai, K.A. (2015). On the theory of two-temperature thermoelasticity without energy dissipation of Green–Naghdi model, Applicable Analysis 94(10): 1997–2010.