Have a personal or library account? Click to login

Twitter language samples reflect collective emotional responses following political leaders’ rhetoric during the pandemic across four countries

Open Access
|Aug 2023

References

  1. Ahmadian, S., Azarshahi, S., & Paulhus, D. L. (2017). Explaining Donald Trump via communication style: Grandiosity, informality, and dynamism. Personality and Individual Differences, 107, 49–53. https://doi.org/10.1016/j.paid.2016.11.018
  2. Ashokkumar, A., & Pennebaker, J. W. (2021). The social and psychological changes of the first months of COVID-19. PsyArXiv. https://doi.org/10.31234/osf.io/a34qp
  3. Barbieri, F., Camacho-Collados, J., Neves, L., & Espinosa-Anke, L. (2020). TweetEval: Unified benchmark and comparative evaluation for Tweet classification (arXiv:2010.12421). arXiv. http://arxiv.org/abs/2010.12421
  4. Barry, J. M. (2004). The great influenza: The epic story of the deadliest plague in history. Viking Press.
  5. Berry-Blunt, A. K., Holtzman, N. S., Donnellan, M. B., & Mehl, M. R. (2021). The story of “I” tracking: Psychological implications of self-referential language use. Social and Personality Psychology Compass. https://doi.org/10.1111/spc3.12647
  6. Borelli, J. L., David, D. H., Rifkin-Graboi, A., Sbarra, D. A., Mehl, M. R., & Mayes, L. C. (2013). Language use in the Adult Attachment Interview: Evidence for attachment-specific emotion regulation. Personal Relationships, 20(1), 23–37. https://doi.org/10.1111/j.1475-6811.2012.01394.x
  7. Boyd, R. L., & Pennebaker, J. W. (2017). Language-based personality: A new approach to personality in a digital world. Current Opinion in Behavioral Sciences, 18, 63-68. https://doi.org/10.1016/j.cobeha.2017.07.017
  8. Brummette, J., & Fussell Sisco, H. (2015). Using Twitter as a means of coping with emotions and uncontrollable crises. Public Relations Review, 41(1), 89–96. https://doi.org/10.1016/j.pubrev.2014.10.009
  9. Bryan, M. L., & Jenkins, S. P. (2016). Multilevel modelling of country effects: A cautionary tale. European Sociological Review, 32(1), 3–22. https://doi.org/10.1093/esr/jcv059
  10. Bundesamt für Statistik (BFS). (2021). Sprachliche Praktiken in der Schweiz—Erste Ergebnisse der Erhebung zur Sprache, Religion und Kultur 2019. Bundesamt Für Statistik (BFS).
  11. Butler, E. A., & Randall, A. K. (2012). Emotional coregulation in close relationshiups. Emotion Review, 5(2), 202–210. https://doi.org/10.1177/1754073912451630
  12. Chen, E., Lerman, K., & Ferrara, E. (2020). The First public coronavirus Twitter dataset. https://arxiv.org/abs/2003.07372
  13. Cheng, I. K., Heyl, J., Lad, N., Facini, G., & Grout, Z. (2021). Evaluation of Twitter data for an emerging crisis: An application to the first wave of COVID-19 in the UK. Scientific Reports, 11(1), 19009. https://doi.org/10.1038/s41598-021-98396-9
  14. Cohn, M. A., Mehl, M. R., & Pennebaker, J. W. (2004). Linguistic markers of psychological change surrounding September 11, 2001. Psychological Science, 15(10), 687–693. https://doi.org/10.1111/j.0956-7976.2004.00741.x
  15. Conway, L. G., Gornick, L. J., Burfeind, C., Mandella, P., Kuenzli, A., Houck, S. C., & Fullerton, D. T. (2012). Does complex or simple rhetoric win elections? An integrative complexity analysis of U.S. presidential campaigns: Complexity and electoral success in U.S. presidential campaigns. Political Psychology, 33(5), 599–618. https://doi.org/10.1111/j.1467-9221.2012.00910.x
  16. Cortina, J. M., & Landis, R. S. (2009). When small effect sizes tell a big story, and when large effect sizes don’t. In: C. Lance & R. J. Vandenberg (Eds.), Statistical and methodological myths and urban legends: Doctrine, verity and fable in the organizational and social sciences (pp. 287–308). Routledge.
  17. Dunlop, W. L., Karan, A., Wilkinson, D., & Harake, N. (2020). Love in the first degree: Individual differences in first-person pronoun use and adult romantic attachment styles. Social Psychological and Personality Science, 11(2), 254-265. https://doi.org/10.1177/1948550619847455
  18. Dyer, O. (2020). Trump claims public health warnings on COVID-19 are a conspiracy against him. BMJ, m941. https://doi.org/10.1136/bmj.m941
  19. Falkenbach, M., & Greer, S. L. (2020). Denial and distraction: How the populist radical right responds to COVID-19 comment on “A scoping review of prr parties’ influence on welfare policy and its implication for population health in Europe”. International Journal of Health Policy and Management, 1. https://doi.org/10.34172/ijhpm.2020.141
  20. Garcia, D., Pellert, M., Lasser, J., & Metzler, H. (2021). Social media emotion macroscopes reflect emotional experiences in society at large. ArXiv:2107.13236 [Cs]. http://arxiv.org/abs/2107.13236
  21. Garcia, D., & Rimé, B. (2019). Collective emotions and social resilience in the digital traces after a terrorist attack. Psychological Science, 30(4), 617–628. https://doi.org/10.1177/0956797619831964
  22. Gelman, A. (2005). Comment: fuzzy and Bayesian p-values and u-values. Statistical Science, 20(4). https://doi.org/10.1214/088342305000000368
  23. Goldenberg, A., & Gross, J. J. (2020). Digital emotion contagion. Trends in Cognitive Sciences, 24(4), 316–328. https://doi.org/10.1016/j.tics.2020.01.009
  24. Götz, F. M., Gosling, S. D., & Rentfrow, P. J. (2022). Small effects: The indispensable foundation for a cumulative psychological science. Perspectives on Psychological Science, 17(1), 205-215. https://doi.org/10.1177/1745691620984483
  25. Hamilton, J. D. (1994). Time series analysis. Princeton University Press.
  26. Hanschmidt, F., & Kersting, A. (2021). Emotions in Covid-19 Twitter discourse following the introduction of social contact restrictions in Central Europe. Journal of Public Health, 14. https://doi.org/10.1007/s10389-021-01613-y
  27. Horn, A. B., & Maercker, A. (2016). Intra- and interpersonal emotion regulation and adjustment symptoms in couples: The role of co-brooding and co-reappraisal. BMC Psychology, 4(1), 51. https://doi.org/10.1186/s40359-016-0159-7
  28. Hughes, A., & Wojcik, S. (2019, August 2). 10 facts about Americans and Twitter. Pew Research Center. https://www.pewresearch.org/fact-tank/2019/08/02/10-facts-about-americans-and-twitter/
  29. Johnson, S. K. (2008). I second that emotion: Effects of emotional contagion and affect at work on leader and follower outcomes. The Leadership Quarterly, 19(1), 1–19. https://doi.org/10.1016/j.leaqua.2007.12.001
  30. Jordan, K. (2022). Language analysis in political psychology. In: R. L. Boyd & M. Dehghani (Eds.), Handbook of language analysis in psychology (pp. 159–172). Guilford Publications.
  31. Jordan, K. N., Pennebaker, J. W., & Ehrig, C. (2018). The 2016 U.S. presidential candidates and how people tweeted about them. SAGE Open, 8(3), 215824401879121. https://doi.org/10.1177/2158244018791218
  32. Karan, A., Rosenthal, R., & Robbins, M. L. (2019). Meta-analytic evidence that we-talk predicts relationship and personal functioning in romantic couples. Journal of Social and Personal Relationships, 36(9), 2624–2651. https://doi.org/10.1177/0265407518795336
  33. Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, 111(24), 8788–8790. https://doi.org/10.1073/pnas.1320040111
  34. Kumar, R. (2021). Impact of societal culture on COVID-19 morbidity and mortality across countries. Journal of Cross-Cultural Psychology, 52(7), 643–662. https://doi.org/10.1177/00220221211025100
  35. Masiero, M., Mazzocco, K., Harnois, C., Cropley, M., & Pravettoni, G. (2020). From individual to social trauma: Sources of everyday trauma in Italy, the US and UK during the COVID-19 pandemic. Journal of Trauma & Dissociation, 21(5), 513–519. https://doi.org/10.1080/15299732.2020.1787296
  36. Mehl, M. R. (2012). How taking a word for a word can be problematic: Context-dependent linguistic markers of extraversion and neuroticism. Journal of Methods and Measurement in the Social Sciences, 3(2), 30–50.
  37. Meier, T., Boyd, R. L., Pennebaker, J. W., Mehl, M. R., Martin, M., Wolf, M., & Horn, A. B. (2019). “LIWC auf Deutsch”: The development, psychometrics, and introduction of DE-LIWC2015. PsyArXiv. https://doi.org/10.31234/osf.io/uq8zt
  38. Metzler, H., Rimé, B., Pellert, M., Natale, A. D., & Garcia, D. (2022). Collective Emotions during the COVID-19 outbreak. Emotion, 23(3), 844–858. https://doi.org/10.1037/emo0001111
  39. Muthen, B., & Asparouhov, T. (2012). Bayesian SEM: A more flexible representation of substantive theory. Psychological Methods, 17(3), 78.
  40. Muthén, L. K., & Muthén, B. O. (2017). Mplus user’s guide (8th ed.). Muthén & Muthén.
  41. Pellert, M., Lasser, J., Metzler, H., & Garcia, D. (2020). Dashboard of sSentiment in Austrian social media during COVID-19. Frontiers in Big Data, 3, 32. https://doi.org/10.3389/fdata.2020.00032
  42. Pellert, M., Metzler, H., Matzenberger, M., & Garcia, D. (2022). Validating daily social media macroscopes of emotions. Scientific Reports, 12(1), 11236. https://doi.org/10.1038/s41598-022-14579-y
  43. Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The development and psychometric properties of LIWC2015. https://repositories.lib.utexas.edu/handle/2152/31333.
  44. Pennebaker, J. W., Chung, C. K., Frazee, J., Lavergne, G. M., & Beaver, D. I. (2014). When small words foretell academic success: The case of college admissions essays. PLoS One, 9(12), e115844. https://doi.org/10.1371/journal.pone.0115844
  45. Pennebaker, J. W., & King, L. A. (1999). Linguistic styles: Language use as an individual difference. Journal of Personality and Social Psychology, 77(6), 1296–1312.
  46. Pennebaker, J. W., & Lay, T. C. (2002). Language use and personality during crises: Analyses of mayor Rudolph Giuliani’s press conferences. Journal of Research in Personality, 36(3), 271–282. https://doi.org/10.1006/jrpe.2002.2349
  47. Pierce, M., Hope, H., Ford, T., Hatch, S., Hotopf, M., John, A., Kontopantelis, E., Webb, R., Wessely, S., McManus, S., & Abel, K. M. (2020). Mental health before and during the COVID-19 pandemic: A longitudinal probability sample survey of the UK population. The Lancet Psychiatry, 7(10), 883–892. https://doi.org/10.1016/S2215-0366(20)30308-4
  48. Purdue, D. (2001). Neighbourhood governance: Leadership, trust and social capital. Urban Studies, 38(12), 2211–2224. https://doi.org/10.1080/00420980120087135
  49. Rimé, B. (2007). Interpersonal emotion regulation. In: J. J. Gross (Ed.), Handbook of emotion regulation (pp. 466–468). The Guilford Press.
  50. Rimé, B. (2020). Collective responses to collective traumas: Synchronization and collective resilience. In: D. Jodelet, J. Vala, & E. Drozda-Senkowska (Eds.), Societies under threat (Vol. 3, pp. 201–211). Springer International Publishing.
  51. Rohrbaugh, M. J., Mehl, M. R., Shoham, V., Reilly, E. S., & Ewy, G. A. (2008). Prognostic significance of spouse we talk in couples coping with heart failure. Journal of Consulting and Clinical Psychology, 76(5), 781. https://doi.org/10.1037/a0013238
  52. Schwartz, H. A., Eichstaedt, J., Kern, M. L., Park, G., Sap, M., Stillwell, D., Kosinski, M., & Ungar, L. (2014). Towards assessing changes in degree of depression through Facebook. Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, 118–125. https://doi.org/10.3115/v1/W14-3214
  53. Schwartz, H. A., Sap, M., Kern, M. L., Eichstaedt, J. C., Kapelner, A., Agrawal, M., Blanco, E., Dziurzynski, L., Park, G., Stillwell, D., Kosinski, M., Seligman, M. E. P., & Ungar, L. H. (2016). Predicting individual well-being through the language of social media. Biocomputing 2016, 516–527. https://doi.org/10.1142/9789814749411_0047
  54. Seabrook, E. M., Kern, M. L., Fulcher, B. D., & Rickard, N. S. (2018). Predicting depression from language-based emotion dynamics: Longitudinal analysis of Facebook and Twitter status updates. Journal of Medical Internet Research, 20(5), e168. https://doi.org/10.2196/jmir.9267
  55. Stevens, G., O’Donnell, V. L., & Williams, L. (2015). Public domain or private data? Developing an ethical approach to social media research in an interdisciplinary project. Educational Research and Evaluation, 21(2), 154–167. https://doi.org/10.1080/13803611.2015.1024010
  56. Stone, L. D., & Pennebaker, J. W. (2002). Trauma in real time: Talking and avoiding online conversations about the death of princess Diana. Basic and Applied Social Psychology, 24(3), 173–183. https://doi.org/10.1207/S15324834BASP2403_1
  57. Tackman, A. M., Sbarra, D. A., Carey, A. L., Donnellan, M. B., Horn, A. B., Holtzman, N. S., Edwards, T. S., Pennebaker, J. W., & Mehl, M. R. (2019). Depression, negative emotionality, and self-referential language: A multi-lab, multi-measure, and multi-language-task research synthesis. Journal of Personality and Social Psychology, 116(5), 817–834. https://doi.org/10.1037/pspp0000187
  58. Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29(1), 24–54. https://doi.org/10.1177/0261927X09351676
  59. Varghese, C., & Xu, W. (2020). Quantifying what could have been—The impact of the Australian and New Zealand governments’ response to COVID-19. Infection, Disease & Health, 25(4), 242–244.
  60. Wegwarth, O., Wagner, G. G., Spies, C., & Hertwig, R. (2020). Assessment of german public attitudes toward health communications with varying degrees of scientific uncertainty regarding COVID-19. JAMA Network Open, 3(12), e2032335. https://doi.org/10.1001/jamanetworkopen.2020.32335
DOI: https://doi.org/10.58734/plc-2023-0017 | Journal eISSN: 2083-8506 | Journal ISSN: 1234-2238
Language: English
Page range: 350 - 383
Published on: Aug 2, 2023
Published by: University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2023 Olenka Dworakowski, Ryan L. Boyd, Tabea Meier, Peter Kuppens, Matthias R. Mehl, Fridtjof W. Nussbeck, Andrea B. Horn, published by University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.