Have a personal or library account? Click to login
Transient bioimpedance monitoring of mechanotransduction in artificial tissue during indentation Cover

Transient bioimpedance monitoring of mechanotransduction in artificial tissue during indentation

Open Access
|Sep 2014

References

  1. Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Developmental cell, 2006:10(1):11-20. http://dx.doi.org/10.1016/j.devcel.2005.12.00610.1016/j.devcel.2005.12.00616399074
  2. Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2009:1793(5):911-920.10.1016/j.bbamcr.2009.01.012
  3. Sukharev S, Sachs F. Molecular force transduction by ion channels–diversity and unifying principles. Journal of cell science, 2012:125(13):3075-3083. http://dx.doi.org/10.1242/jcs.09235310.1242/jcs.09235322797911
  4. Burgess PT, Perl, ER. Cutaneous mechanoreceptors and nociceptors. In Somatosensory system. Springer Berlin Heidelberg; 1973. p. 29-78. http://dx.doi.org/10.1007/978-3-642-65438-1_3
  5. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science, 1985:227(4683):194-196. http://dx.doi.org/10.1126/science.396615310.1126/science.39661533966153
  6. Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. American journal of orthodontics and dentofacial orthopedics, 1997:112(1):8-11. http://dx.doi.org/10.1016/S0889-5406(97)70267-110.1016/S0889-5406(97)70267-1
  7. Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circulation Research, 1991:85(1):5-11. http://dx.doi.org/10.1161/01.RES.85.1.5
  8. Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nature Reviews Molecular Cell Biology, 2009:10(1):53-62. http://dx.doi.org/10.1038/nrm25961919733210.1038/nrm2596
  9. Chiquet M, Renedo AS, Huber F, Flück M. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix biology, 2003:22(1):73-80http://dx.doi.org/10.1016/S0945-053X(03)00004-010.1016/S0945-053X(03)00004-0
  10. Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: Evidence for a mechanotransduction‐ based mechanism. Journal of cellular physiology, 2006:207(3):767-774. http://dx.doi.org/10.1002/jcp.206231651183010.1002/jcp.20623
  11. Schwarz US, Gardel ML. United we stand–integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. Journal of cell science, 2012:125(13):3051-3060. http://dx.doi.org/10.1242/jcs.09371610.1242/jcs.09371622797913
  12. Zhang H. Labouesse M. Signalling through mechanical inputs–a coordinated process. Journal of cell science, 2012:125(13):3039-3049. http://dx.doi.org/10.1242/jcs.093666
  13. Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. Journal of cell science, 2004:117(12):2449-2460. http://dx.doi.org/10.1242/jcs.012321515945010.1242/jcs.01232
  14. Kandel ER, Schwartz JH, Jessell TM. (Eds.). Principles of neural science Vol. 4, New York: McGraw-Hill; 2000.
  15. Neef K, Choi YH, Perumal Srinivasan S, Treskes P, Cowan DB, Stamm C, Wahlers T. Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardium. The Journal of thoracic and cardiovascular surgery, 2012:144(5):1176-1184. http://dx.doi.org/10.1016/j.jtcvs.2012.07.03610.1016/j.jtcvs.2012.07.03622980065
  16. Han A. Microfabricated Multi-Analysis System for Electrophysiological Studies of Single Cells. PhD Thesis, Georgia Institute of Technology, 2005.
  17. Abramochkin DV, Lozinsky IT, Kamkin A. Influence of mechanical stress on fibroblast–myocyte interactions in mammalian heart. Journal of molecular and cellular cardiology. 2014:70:27-36. http://dx.doi.org/10.1016/j.yjmcc.2013.12.0202438934410.1016/j.yjmcc.2013.12.020
  18. French AS. Mechanotransduction. Annual review of physiology, 1992:54(1):135-152. http://dx.doi.org/10.1146/annurev.ph.54.030192.00103110.1146/annurev.ph.54.030192.0010311373277
  19. Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Barakat AI. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annual Review of Physiology, 1997:59(1):527-549. http://dx.doi.org/10.1146/annurev.physiol.59.1.52710.1146/annurev.physiol.59.1.5279074776
  20. Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Use of nanotopography to study mechanotransduction in fibroblasts–methods and perspectives. European journal of cell biology, 2004:83(4):159-169. http://dx.doi.org/10.1078/0171-9335-0036910.1078/0171-9335-0036915260438
  21. Martinez E, Engel E, Planell JA, Samitier J. Effects of artificial micro-and nano-structured surfaces on cell behaviour. Annals of Anatomy-Anatomischer Anzeiger, 2009:191(1):126-135. http://dx.doi.org/10.1016/j.aanat.2008.05.00610.1016/j.aanat.2008.05.006
  22. Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang, M, Schwartz MA. Integrins in mechanotransduction. Current opinion in cell biology, 2013:25(5):613-618. http://dx.doi.org/10.1016/j.ceb.2013.05.0062379702910.1016/j.ceb.2013.05.006
  23. Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2001:2(11):793-805. http://dx.doi.org/10.1038/3509906610.1038/3509906611715046
  24. Baker BM, Chen CS. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. Journal of cell science, 2012:125(13):3015-3024. http://dx.doi.org/10.1242/jcs.07950910.1242/jcs.07950922797912
  25. Katsumi A, Orr AW, Tzima E, Schwartz MA. Integrins in mechanotransduction. Journal of Biological Chemistry, 2004:279(13):12001-12004. http://dx.doi.org/10.1074/jbc.R30003820010.1074/jbc.R300038200
  26. Chen CS, Tan J, Tien J. Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng., 2004:6:275-302. http://dx.doi.org/10.1146/annurev.bioeng.6.040803.14004010.1146/annurev.bioeng.6.040803.14004015255771
  27. Wang JHC, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. Gene, 2007:391(1):1-15. http://dx.doi.org/10.1016/j.gene.2007.01.01410.1016/j.gene.2007.01.01417331678
  28. Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring: barrier properties and beyond. Fluids and barriers of the CNS, 2013:10(5).
  29. Qiu Y, Liao R, Zhang X. Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing. Analytical chemistry, 2008:80(4):990-996. http://dx.doi.org/10.1021/ac701745c1821501910.1021/ac701745c
  30. Dodde RE, Bull JL, Shih, AJ. Bioimpedance of soft tissue under compression. Physiological measurement, 2012:33(6):1095. http://dx.doi.org/10.1088/0967-3334/33/6/109510.1088/0967-3334/33/6/109522621935
  31. Belmont B, Dodde RE, Shih AJ. Impedance of tissue-mimicking phantom material under compression. Journal of Electrical Bioimpedance, 2013:4(1):2-12. http://dx.doi.org/10.5617/jeb.443
  32. Nam JH, Chen PC, Lu Z, Luo H, Ge R, Lin W. Force control for mechanoinduction of impedance variation in cellular organisms. Journal of Micromechanics and Microengineering, 2010:20(2):025003. http://dx.doi.org/10.1088/0960-1317/20/2/02500310.1088/0960-1317/20/2/025003
  33. Miano G, Maffucci A. Transmission lines and lumped circuits: fundamentals and applications. Academic Press; 2001.
  34. Xiang Y. The electrostatic capacitance of an inclined plate capacitor, Journal of Electrostatics, 2006:64:29-34. http://dx.doi.org/10.1016/j.elstat.2005.05.002
  35. Hong J, Yoon DS, Kim SK, Kim TS, Kim S, Pak EY, No K, AC frequency characteristics of coplanar impedance sensors as design parameters, Lab on a Chip, 2005:5:270-279. http://dx.doi.org/10.1039/b410325d
  36. Gevorgian S, Berg H. Line capacitance and impedance of coplanar-strip waveguides on substrates with multiple dielectric layers, 31st European Microwave Conference (London); 2001:1–4.
  37. Hunt NC, An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture to expedite wound healing, PhD Thesis, University of Birmingham, 2010
  38. Kaklamani G, Cheneler D, Grover LM, Adams MJ, Bowen J. Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the mechanical behavior of biomedical materials, 2014:36:135-142. http://dx.doi.org/10.1016/j.jmbbm.2014.04.01310.1016/j.jmbbm.2014.04.01324841676
  39. Lin DC, Shreiber DI, Dimitriadis EK, Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomechanics and modeling in mechanobiology, 2009:8(5):345-358. http://dx.doi.org/10.1007/s10237-008-0139-910.1007/s10237-008-0139-918979205
  40. Cheneler D, Mehrban N, Bowen J. Spherical indentation analysis of stress relaxation for thin film viscoelastic materials. Rheologica Acta, 2013:52(7):695-706. http://dx.doi.org/10.1007/s00397-013-0707-510.1007/s00397-013-0707-5
  41. Coleman TF, Y Li. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM Journal on Optimization, 1996:6:418–445. http://dx.doi.org/10.1137/080602310.1137/0806023
  42. Demirel MC, So E, Ritty TM, Naidu SH, Lakhtakia A. Fibroblast Cell Attachment and Growth on Nanoengineered Sculptured Thin Films, J Biomed Mater Res B Appl Biomater., 2007:81(1):219-223. http://dx.doi.org/10.1002/jbm.b.3065616924604
  43. Tandon GP, Weng GJ. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer composites 1984:5(4):327-333. http://dx.doi.org/10.1002/pc.75005041310.1002/pc.750050413
  44. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science, 2001:294(5547):1708-1712. http://dx.doi.org/10.1126/science.10648291172105310.1126/science.1064829
  45. Zamir E, Katz BZ, Aota SI, Yamada KM, Geiger B, Kam Z. Molecular diversity of cell-matrix adhesions. Journal of cell science, 1999:112(11):1655-1669.10318759
  46. Rowley JA., Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1991:20(1):45-53. http://dx.doi.org/10.1016/S0142-9612(98)00107-0
  47. Smetana Jr, K. Cell biology of hydrogels. Biomaterials, 1993:14(14):1046-1050. http://dx.doi.org/10.1016/0142-9612(93)90203-E10.1016/0142-9612(93)90203-E8312457
  48. Harunaga JS, Yamada KM. Cell-matrix adhesions in 3D. Matrix Biology, 2011:30(7):363-368. http://dx.doi.org/10.1016/j.matbio.2011.06.00110.1016/j.matbio.2011.06.001
  49. Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials, 1997:18(8):583-590. http://dx.doi.org/10.1016/S0142-9612(96)00181-010.1016/S0142-9612(96)00181-09134157
  50. Zhang J, Daubert CR, Foegeding EA, A proposed strain-hardening mechanism for alginate gels, Journal of Food Engineering, 2007:80(1):157-165. http://dx.doi.org/10.1016/j.jfoodeng.2006.04.057
  51. Smidsrød O. Molecular-basis for some physical-properties of alginates in gel state, Journal of Chemical Society: Faraday Transactions, 1975:57:263–272.
  52. Clark AH, Ross-Murphy SB. Structure and mechanical properties of biopolymer gels, Advances in Polymer Science, 1987:83:59–191. http://dx.doi.org/10.1007/BFb0023332
  53. Blatz PJ, Sharda SC, Tschoegl NW. Strain energy function for rubberlike materials based on a generalized measure of strain, Transactions of the Society of Rheology, 1974:18(1):145-161. http://dx.doi.org/10.1122/1.54935310.1122/1.549353
  54. Doi M, Kuzuu NY, Non-linear elasticity of rodlike macromolecules in condensed state, Journal of Polymer Science: Polymer Physics Edition, 1980:18:409–419. http://dx.doi.org/10.1002/pol.1980.180180301
  55. Shapiro JM, Oyen ML. Viscoelastic analysis of single-component and composite PEG and alginate hydrogels. Acta Mechanica Sinica, 2014:30(1):7-14. http://dx.doi.org/10.1007/s10409-014-0025-x10.1007/s10409-014-0025-x
  56. Olderøy MØ, Xie M, Andreassen JP, Strand BL, Zhang Z, Sikorski P. Viscoelastic properties of mineralized alginate hydrogel beads. Journal of Materials Science: Materials in Medicine, 2012:23(7):1619-1627. http://dx.doi.org/10.1007/s10856-012-4655-x22552827
  57. Andrews JW, Bowen J, Cheneler D. Optimised determination of viscoelastic properties using compliant measurement systems. Soft Matter, 2013:9(23):5581-5593. http://dx.doi.org/10.1039/c3sm50706h10.1039/c3sm50706h
  58. Lee EH, Radok JRM. The contact problem for viscoelastic bodies. Journal of Applied Mechanics, 1960:27(3):438-444. http://dx.doi.org/10.1115/1.364402010.1115/1.3644020
  59. Lai WM, Hou JS, Mow VC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of biomechanical engineering, 1991:113(3):245-258. http://dx.doi.org/10.1115/1.289488010.1115/1.28948801921350
  60. Huyghe JM, Janssen JD. Quadriphasic mechanics of swelling incompressible porous media. International Journal of Engineering Science, 1997:35(8):793-802. http://dx.doi.org/10.1016/S0020-7225(96)00119-X10.1016/S0020-7225(96)00119-X
  61. Hong W, Zhao X, Zhou J, Suo Z. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008:56(5):1779-1793. http://dx.doi.org/10.1016/j.jmps.2007.11.01010.1016/j.jmps.2007.11.010
  62. Feng L, Jia Y, Chen X, Li X, An L. A multiphasic model for the volume change of polyelectrolyte hydrogels. The Journal of chemical physics, 2010:133(11):114904. http://dx.doi.org/10.1063/1.348423610.1063/1.348423620866154
  63. Chester SA. A constitutive model for coupled fluid permeation and large viscoelastic deformation in polymeric gels. Soft Matter, 2012:8(31):8223-8233. http://dx.doi.org/10.1039/c2sm25372k10.1039/c2sm25372k
  64. Wang X, Hong W. A visco-poroelastic theory for polymeric gels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2012:468(2148):3824-3841.10.1098/rspa.2012.0385
  65. Drozdov AD, Christiansen J. Stress–strain relations for hydrogels under multiaxial deformation. International Journal of Solids and Structures, 2013:50(22):3570-3585. http://dx.doi.org/10.1016/j.ijsolstr.2013.06.02310.1016/j.ijsolstr.2013.06.023
  66. Ateshian GA, Chahine NO, Basalo IM, Hung CT. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. Journal of biomechanics, 2004:37(3):391-400. http://dx.doi.org/10.1016/S0021-9290(03)00252-510.1016/S0021-9290(03)00252-514757459
  67. Hoang SK, Abousleiman YN. Correspondence principle between anisotropic poroviscoelasticity and poroelasticity using micromechanics and application to compression of orthotropic rectangular strips. Journal of Applied Physics, 2012:112(4):044907. http://dx.doi.org/10.1063/1.474829310.1063/1.4748293
  68. Huyghe JM, Malakpoor K, Wilson W. On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. Journal of biomechanical engineering, 2009:131(4):044504. http://dx.doi.org/10.1115/1.30495311927544610.1115/1.3049531
  69. Aslani P, Kennedy RA. Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. Journal of controlled release, 1996:42(175-82. http://dx.doi.org/10.1016/0168-3659(96)01369-710.1016/0168-3659(96)01369-7
  70. Lu XL, Wan LQ, Guo X, Mow VC. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. Journal of biomechanics, 2010:43(4):673-679. http://dx.doi.org/10.1016/j.jbiomech.2009.10.02610.1016/j.jbiomech.2009.10.02619896670
  71. Duan Z, An Y, Zhang J, Jiang H. The effect of large deformation and material nonlinearity on gel indentation. Acta Mechanica Sinica, 2012:28(4),1058-1067. http://dx.doi.org/10.1007/s10409-012-0122-710.1007/s10409-012-0122-7
  72. Wilson W, van Donkelaar CC, Huyghe JM. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. Journal of biomechanical engineering, 2005:127(1):158-165. http://dx.doi.org/10.1115/1.18353611586879810.1115/1.1835361
  73. Jackson AR, Yuan TY, Huang CY, Gu WY. A Conductivity Approach to Measuring Fixed Charge Density in Intervertebral Disc Tissue. Annals of biomedical engineering, 2009:37(12):2566-2573. http://dx.doi.org/10.1007/s10439-009-9792-010.1007/s10439-009-9792-019757059
  74. Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules, 1998:31(23):8382-8395. http://dx.doi.org/10.1021/ma980765f
  75. Gu WY, Yao H, Vega AL, Flagler D. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Annals of biomedical engineering, 2004:32(12):1710-1717. http://dx.doi.org/10.1007/s10439-004-7823-410.1007/s10439-004-7823-415675682
  76. Gu WY, Yao H, Huang CY, Cheung HS. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. Journal of biomechanics, 2003:36(4):593-598. http://dx.doi.org/10.1016/S0021-9290(02)00437-21260034910.1016/S0021-9290(02)00437-2
  77. Lai WM, Mow VC, Roth V. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. Journal of biomechanical engineering, 1981:103(2):61-66. http://dx.doi.org/10.1115/1.313826110.1115/1.31382617278183
  78. O'Shaughnessy B, Yang Q. Manning-Oosawa counterion condensation. Physical review letters, 2005:94(4):048302. http://dx.doi.org/10.1103/PhysRevLett.94.0483021578360710.1103/PhysRevLett.94.048302
  79. Sigma-Aldrich [Internet]. Dulbecco's Modified Eagle's Medium Formulation [Updated cited 2014 April 14]. Available from: http://www.sigmaaldrich.com/life-science/cell-culture/learning-center/media-formulations/dme.html
  80. Perry RH, Green DW, Maloney, JO. Perry's chemical engineer's handbook. McGraw-Hill Book; 1984.
  81. Bekin S, Sarmad S, Gürkan K, Yenici G, Keçeli G, Gürdağ G. Dielectric, thermal, and swelling properties of calcium ion‐ crosslinked sodium alginate film. Polymer Engineering & Science. 2013
  82. Binns JS, Craig DQM, Hill RM, Davies MC, Melia CD, Newton JM, Dielectric characterisation of sodium alginate gels. Journal of Materials Chemistry, 1992:2(5):545-549. http://dx.doi.org/10.1039/jm992020054510.1039/jm9920200545
  83. Lin SP, Kyriakides TR, Chen JJJ. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays. Biomaterials, 2009:30(17):3110-3117. http://dx.doi.org/10.1016/j.biomaterials.2009.03.01710.1016/j.biomaterials.2009.03.017
  84. Sawada A. Tarumi K, Naemura S. Effects of electric double layer and space charge polarization by plural kinds of ions on complex dielectric constant of liquid crystal materials. Japanese journal of applied physics, 1991:38(3R):1418.
  85. Bordi F, Cametti C, Colby RH. Dielectric spectroscopy and conductivity of polyelectrolyte solutions. Journal of Physics: Condensed Matter, 2004:16(49):R1423. http://dx.doi.org/10.1088/0953-8984/16/49/R01
  86. Sawada A. Internal electric fields of electrolytic solutions induced by space-charge polarization. Journal of applied physics, 2006:100(7):074103. http://dx.doi.org/10.1063/1.235544910.1063/1.2355449
  87. Thoumine O, Ott A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. Journal of cell science, 1997:110(17):2109-2116.9378761
  88. Park S, Koch D, Cardenas R, Käs J, Shih CK. Cell motility and local viscoelasticity of fibroblasts. Biophysical journal, 2005:89(6):4330-4342. http://dx.doi.org/10.1529/biophysj.104.05346210.1529/biophysj.104.05346216199496
  89. Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell, 1994:77(4):477-478. http://dx.doi.org/10.1016/0092-8674(94)90209-710.1016/0092-8674(94)90209-78187171
  90. Ingber DE. Mechanochemical switching between growth and differentiation by extracellular matrix, In: Lanza RP, Langer R, Chick WL, editors. Principles of tissue engineering. Austin, TX: R.G. Landes Company, 1997:89-100.
  91. Chiquet M, Tunc-Civelek V, Sarasa-Renedo A. Gene regulation by mechanotransduction in fibroblasts. Applied Physiology, Nutrition, and Metabolism, 2007:32(5):967-973. http://dx.doi.org/10.1139/H07-05310.1139/H07-053
  92. Ko KS, McCulloch CA. Intercellular mechanotransduction: cellular circuits that coordinate tissue responses to mechanical loading. Biochemical and biophysical research communications, 2001:285(5):1077-1083. http://dx.doi.org/10.1006/bbrc.2001.51771147876310.1006/bbrc.2001.5177
  93. Shyy JY, Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Current opinion in cell biology, 1997:9(5):707-713. http://dx.doi.org/10.1016/S0955-0674(97)80125-1933087510.1016/S0955-0674(97)80125-1
  94. Van Den Brink GR, Bloemers SM, Van Den Blink B, Tertoolen LG, Van Deventer SJ, Peppelenbosch MP. Study of calcium signaling in non‐excitable cells. Microscopy research and technique, 1999:46(6):418-433. http://dx.doi.org/10.1002/(SICI)1097-0029(19990915)46:6<418::AID-JEMT9>3.0.CO;2-010.1002/(SICI)1097-0029(19990915)46:6<;418::AID-JEMT9>3.0.CO;2-010504218
  95. Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annual review of physiology, 1997:59(1):575-599. http://dx.doi.org/10.1146/annurev.physiol.59.1.575907477810.1146/annurev.physiol.59.1.575
  96. Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell, 1997:88(1):39-48. http://dx.doi.org/10.1016/S0092-8674(00)81856-510.1016/S0092-8674(00)81856-59019403
  97. Walker RG, Willingham AT, Zuker CS. A Drosophila mechanosensory transduction channel. Science, 2000:287(5461):2229-2234. http://dx.doi.org/10.1126/science.287.5461.22291074454310.1126/science.287.5461.2229
  98. Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochemical and biophysical research communications, 2005:328(3):751-755. http://dx.doi.org/10.1016/j.bbrc.2004.12.0871569441010.1016/j.bbrc.2004.12.087
  99. Wright MO, Stockwell RA, Nuki G. Response of plasma membrane to applied hydrostatic pressure in chondrocytes and fibroblasts. Connective tissue research, 1992:28(1-2):49-70. http://dx.doi.org/10.3109/03008209209014227162849010.3109/03008209209014227
  100. Shi ZD, Tarbell JM. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Annals of biomedical engineering, 2011:39(6):1608-1619. http://dx.doi.org/10.1007/s10439-011-0309-22147975410.1007/s10439-011-0309-2
  101. Shoichet MS, Li RH, White ML, Winn SR. Stability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agarose. Biotechnology and bioengineering, 2006:50(4):374-381. http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-I
  102. Ko KS, Arora PD, McCulloch CA. Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. Journal of Biological Chemistry, 2001:276(38):35967-35977. http://dx.doi.org/10.1074/jbc.M10410620010.1074/jbc.M104106200
  103. Harootunian AT, Kao JP, Paranjape S, Tsien RY. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science, 1991:251(4989), 75-78. http://dx.doi.org/10.1126/science.1986413198641310.1126/science.1986413
  104. McNeil SE, Hobson SA, Nipper V, Rodland, KD. Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. Journal of Biological Chemistry, 1998:273(2):1114-1120. http://dx.doi.org/10.1074/jbc.273.2.111410.1074/jbc.273.2.1114
  105. De Roos AD, Willems PH, Van Zoelen EJ, Theuvenet AP. Synchronized Ca2+ signaling by intercellular propagation of Ca2+ action potentials in NRK fibroblasts. American Journal of Physiology-Cell Physiology, 1997:273(6):C1900-C1907.10.1152/ajpcell.1997.273.6.C1900
  106. Breitwieser GE. Extracellular calcium as an integrator of tissue function. The international journal of biochemistry & cell biology, 2008:40(8):1467-1480. http://dx.doi.org/10.1016/j.biocel.2008.01.01910.1016/j.biocel.2008.01.01918328773
  107. DuFort CC, Paszek MJ, Weaver, VM. Balancing forces: architectural control of mechanotransduction. Nature Reviews: Molecular cell biology, 2011:12(5):308-319. http://dx.doi.org/10.1038/nrm31122150898710.1038/nrm3112
DOI: https://doi.org/10.5617/jeb.869 | Journal eISSN: 1891-5469
Language: English
Page range: 55 - 73
Submitted on: Apr 29, 2014
Published on: Sep 9, 2014
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 David Cheneler, James Bowen, Georgia Kaklamani, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.