References
- Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Developmental cell, 2006:10(1):11-20. http://dx.doi.org/10.1016/j.devcel.2005.12.00610.1016/j.devcel.2005.12.00616399074
- Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2009:1793(5):911-920.10.1016/j.bbamcr.2009.01.012
- Sukharev S, Sachs F. Molecular force transduction by ion channels–diversity and unifying principles. Journal of cell science, 2012:125(13):3075-3083. http://dx.doi.org/10.1242/jcs.09235310.1242/jcs.09235322797911
- Burgess PT, Perl, ER. Cutaneous mechanoreceptors and nociceptors. In Somatosensory system. Springer Berlin Heidelberg; 1973. p. 29-78. http://dx.doi.org/10.1007/978-3-642-65438-1_3
- Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science, 1985:227(4683):194-196. http://dx.doi.org/10.1126/science.396615310.1126/science.39661533966153
- Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. American journal of orthodontics and dentofacial orthopedics, 1997:112(1):8-11. http://dx.doi.org/10.1016/S0889-5406(97)70267-110.1016/S0889-5406(97)70267-1
- Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circulation Research, 1991:85(1):5-11. http://dx.doi.org/10.1161/01.RES.85.1.5
- Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nature Reviews Molecular Cell Biology, 2009:10(1):53-62. http://dx.doi.org/10.1038/nrm25961919733210.1038/nrm2596
- Chiquet M, Renedo AS, Huber F, Flück M. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix biology, 2003:22(1):73-80http://dx.doi.org/10.1016/S0945-053X(03)00004-010.1016/S0945-053X(03)00004-0
- Langevin HM, Bouffard NA, Badger GJ, Churchill DL, Howe AK. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: Evidence for a mechanotransduction‐ based mechanism. Journal of cellular physiology, 2006:207(3):767-774. http://dx.doi.org/10.1002/jcp.206231651183010.1002/jcp.20623
- Schwarz US, Gardel ML. United we stand–integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. Journal of cell science, 2012:125(13):3051-3060. http://dx.doi.org/10.1242/jcs.09371610.1242/jcs.09371622797913
- Zhang H. Labouesse M. Signalling through mechanical inputs–a coordinated process. Journal of cell science, 2012:125(13):3039-3049. http://dx.doi.org/10.1242/jcs.093666
- Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. Journal of cell science, 2004:117(12):2449-2460. http://dx.doi.org/10.1242/jcs.012321515945010.1242/jcs.01232
- Kandel ER, Schwartz JH, Jessell TM. (Eds.). Principles of neural science Vol. 4, New York: McGraw-Hill; 2000.
- Neef K, Choi YH, Perumal Srinivasan S, Treskes P, Cowan DB, Stamm C, Wahlers T. Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardium. The Journal of thoracic and cardiovascular surgery, 2012:144(5):1176-1184. http://dx.doi.org/10.1016/j.jtcvs.2012.07.03610.1016/j.jtcvs.2012.07.03622980065
- Han A. Microfabricated Multi-Analysis System for Electrophysiological Studies of Single Cells. PhD Thesis, Georgia Institute of Technology, 2005.
- Abramochkin DV, Lozinsky IT, Kamkin A. Influence of mechanical stress on fibroblast–myocyte interactions in mammalian heart. Journal of molecular and cellular cardiology. 2014:70:27-36. http://dx.doi.org/10.1016/j.yjmcc.2013.12.0202438934410.1016/j.yjmcc.2013.12.020
- French AS. Mechanotransduction. Annual review of physiology, 1992:54(1):135-152. http://dx.doi.org/10.1146/annurev.ph.54.030192.00103110.1146/annurev.ph.54.030192.0010311373277
- Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Barakat AI. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annual Review of Physiology, 1997:59(1):527-549. http://dx.doi.org/10.1146/annurev.physiol.59.1.52710.1146/annurev.physiol.59.1.5279074776
- Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Use of nanotopography to study mechanotransduction in fibroblasts–methods and perspectives. European journal of cell biology, 2004:83(4):159-169. http://dx.doi.org/10.1078/0171-9335-0036910.1078/0171-9335-0036915260438
- Martinez E, Engel E, Planell JA, Samitier J. Effects of artificial micro-and nano-structured surfaces on cell behaviour. Annals of Anatomy-Anatomischer Anzeiger, 2009:191(1):126-135. http://dx.doi.org/10.1016/j.aanat.2008.05.00610.1016/j.aanat.2008.05.006
- Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang, M, Schwartz MA. Integrins in mechanotransduction. Current opinion in cell biology, 2013:25(5):613-618. http://dx.doi.org/10.1016/j.ceb.2013.05.0062379702910.1016/j.ceb.2013.05.006
- Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2001:2(11):793-805. http://dx.doi.org/10.1038/3509906610.1038/3509906611715046
- Baker BM, Chen CS. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. Journal of cell science, 2012:125(13):3015-3024. http://dx.doi.org/10.1242/jcs.07950910.1242/jcs.07950922797912
- Katsumi A, Orr AW, Tzima E, Schwartz MA. Integrins in mechanotransduction. Journal of Biological Chemistry, 2004:279(13):12001-12004. http://dx.doi.org/10.1074/jbc.R30003820010.1074/jbc.R300038200
- Chen CS, Tan J, Tien J. Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng., 2004:6:275-302. http://dx.doi.org/10.1146/annurev.bioeng.6.040803.14004010.1146/annurev.bioeng.6.040803.14004015255771
- Wang JHC, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. Gene, 2007:391(1):1-15. http://dx.doi.org/10.1016/j.gene.2007.01.01410.1016/j.gene.2007.01.01417331678
- Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring: barrier properties and beyond. Fluids and barriers of the CNS, 2013:10(5).
- Qiu Y, Liao R, Zhang X. Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing. Analytical chemistry, 2008:80(4):990-996. http://dx.doi.org/10.1021/ac701745c1821501910.1021/ac701745c
- Dodde RE, Bull JL, Shih, AJ. Bioimpedance of soft tissue under compression. Physiological measurement, 2012:33(6):1095. http://dx.doi.org/10.1088/0967-3334/33/6/109510.1088/0967-3334/33/6/109522621935
- Belmont B, Dodde RE, Shih AJ. Impedance of tissue-mimicking phantom material under compression. Journal of Electrical Bioimpedance, 2013:4(1):2-12. http://dx.doi.org/10.5617/jeb.443
- Nam JH, Chen PC, Lu Z, Luo H, Ge R, Lin W. Force control for mechanoinduction of impedance variation in cellular organisms. Journal of Micromechanics and Microengineering, 2010:20(2):025003. http://dx.doi.org/10.1088/0960-1317/20/2/02500310.1088/0960-1317/20/2/025003
- Miano G, Maffucci A. Transmission lines and lumped circuits: fundamentals and applications. Academic Press; 2001.
- Xiang Y. The electrostatic capacitance of an inclined plate capacitor, Journal of Electrostatics, 2006:64:29-34. http://dx.doi.org/10.1016/j.elstat.2005.05.002
- Hong J, Yoon DS, Kim SK, Kim TS, Kim S, Pak EY, No K, AC frequency characteristics of coplanar impedance sensors as design parameters, Lab on a Chip, 2005:5:270-279. http://dx.doi.org/10.1039/b410325d
- Gevorgian S, Berg H. Line capacitance and impedance of coplanar-strip waveguides on substrates with multiple dielectric layers, 31st European Microwave Conference (London); 2001:1–4.
- Hunt NC, An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture to expedite wound healing, PhD Thesis, University of Birmingham, 2010
- Kaklamani G, Cheneler D, Grover LM, Adams MJ, Bowen J. Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the mechanical behavior of biomedical materials, 2014:36:135-142. http://dx.doi.org/10.1016/j.jmbbm.2014.04.01310.1016/j.jmbbm.2014.04.01324841676
- Lin DC, Shreiber DI, Dimitriadis EK, Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomechanics and modeling in mechanobiology, 2009:8(5):345-358. http://dx.doi.org/10.1007/s10237-008-0139-910.1007/s10237-008-0139-918979205
- Cheneler D, Mehrban N, Bowen J. Spherical indentation analysis of stress relaxation for thin film viscoelastic materials. Rheologica Acta, 2013:52(7):695-706. http://dx.doi.org/10.1007/s00397-013-0707-510.1007/s00397-013-0707-5
- Coleman TF, Y Li. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM Journal on Optimization, 1996:6:418–445. http://dx.doi.org/10.1137/080602310.1137/0806023
- Demirel MC, So E, Ritty TM, Naidu SH, Lakhtakia A. Fibroblast Cell Attachment and Growth on Nanoengineered Sculptured Thin Films, J Biomed Mater Res B Appl Biomater., 2007:81(1):219-223. http://dx.doi.org/10.1002/jbm.b.3065616924604
- Tandon GP, Weng GJ. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer composites 1984:5(4):327-333. http://dx.doi.org/10.1002/pc.75005041310.1002/pc.750050413
- Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science, 2001:294(5547):1708-1712. http://dx.doi.org/10.1126/science.10648291172105310.1126/science.1064829
- Zamir E, Katz BZ, Aota SI, Yamada KM, Geiger B, Kam Z. Molecular diversity of cell-matrix adhesions. Journal of cell science, 1999:112(11):1655-1669.10318759
- Rowley JA., Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1991:20(1):45-53. http://dx.doi.org/10.1016/S0142-9612(98)00107-0
- Smetana Jr, K. Cell biology of hydrogels. Biomaterials, 1993:14(14):1046-1050. http://dx.doi.org/10.1016/0142-9612(93)90203-E10.1016/0142-9612(93)90203-E8312457
- Harunaga JS, Yamada KM. Cell-matrix adhesions in 3D. Matrix Biology, 2011:30(7):363-368. http://dx.doi.org/10.1016/j.matbio.2011.06.00110.1016/j.matbio.2011.06.001
- Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials, 1997:18(8):583-590. http://dx.doi.org/10.1016/S0142-9612(96)00181-010.1016/S0142-9612(96)00181-09134157
- Zhang J, Daubert CR, Foegeding EA, A proposed strain-hardening mechanism for alginate gels, Journal of Food Engineering, 2007:80(1):157-165. http://dx.doi.org/10.1016/j.jfoodeng.2006.04.057
- Smidsrød O. Molecular-basis for some physical-properties of alginates in gel state, Journal of Chemical Society: Faraday Transactions, 1975:57:263–272.
- Clark AH, Ross-Murphy SB. Structure and mechanical properties of biopolymer gels, Advances in Polymer Science, 1987:83:59–191. http://dx.doi.org/10.1007/BFb0023332
- Blatz PJ, Sharda SC, Tschoegl NW. Strain energy function for rubberlike materials based on a generalized measure of strain, Transactions of the Society of Rheology, 1974:18(1):145-161. http://dx.doi.org/10.1122/1.54935310.1122/1.549353
- Doi M, Kuzuu NY, Non-linear elasticity of rodlike macromolecules in condensed state, Journal of Polymer Science: Polymer Physics Edition, 1980:18:409–419. http://dx.doi.org/10.1002/pol.1980.180180301
- Shapiro JM, Oyen ML. Viscoelastic analysis of single-component and composite PEG and alginate hydrogels. Acta Mechanica Sinica, 2014:30(1):7-14. http://dx.doi.org/10.1007/s10409-014-0025-x10.1007/s10409-014-0025-x
- Olderøy MØ, Xie M, Andreassen JP, Strand BL, Zhang Z, Sikorski P. Viscoelastic properties of mineralized alginate hydrogel beads. Journal of Materials Science: Materials in Medicine, 2012:23(7):1619-1627. http://dx.doi.org/10.1007/s10856-012-4655-x22552827
- Andrews JW, Bowen J, Cheneler D. Optimised determination of viscoelastic properties using compliant measurement systems. Soft Matter, 2013:9(23):5581-5593. http://dx.doi.org/10.1039/c3sm50706h10.1039/c3sm50706h
- Lee EH, Radok JRM. The contact problem for viscoelastic bodies. Journal of Applied Mechanics, 1960:27(3):438-444. http://dx.doi.org/10.1115/1.364402010.1115/1.3644020
- Lai WM, Hou JS, Mow VC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of biomechanical engineering, 1991:113(3):245-258. http://dx.doi.org/10.1115/1.289488010.1115/1.28948801921350
- Huyghe JM, Janssen JD. Quadriphasic mechanics of swelling incompressible porous media. International Journal of Engineering Science, 1997:35(8):793-802. http://dx.doi.org/10.1016/S0020-7225(96)00119-X10.1016/S0020-7225(96)00119-X
- Hong W, Zhao X, Zhou J, Suo Z. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008:56(5):1779-1793. http://dx.doi.org/10.1016/j.jmps.2007.11.01010.1016/j.jmps.2007.11.010
- Feng L, Jia Y, Chen X, Li X, An L. A multiphasic model for the volume change of polyelectrolyte hydrogels. The Journal of chemical physics, 2010:133(11):114904. http://dx.doi.org/10.1063/1.348423610.1063/1.348423620866154
- Chester SA. A constitutive model for coupled fluid permeation and large viscoelastic deformation in polymeric gels. Soft Matter, 2012:8(31):8223-8233. http://dx.doi.org/10.1039/c2sm25372k10.1039/c2sm25372k
- Wang X, Hong W. A visco-poroelastic theory for polymeric gels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2012:468(2148):3824-3841.10.1098/rspa.2012.0385
- Drozdov AD, Christiansen J. Stress–strain relations for hydrogels under multiaxial deformation. International Journal of Solids and Structures, 2013:50(22):3570-3585. http://dx.doi.org/10.1016/j.ijsolstr.2013.06.02310.1016/j.ijsolstr.2013.06.023
- Ateshian GA, Chahine NO, Basalo IM, Hung CT. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. Journal of biomechanics, 2004:37(3):391-400. http://dx.doi.org/10.1016/S0021-9290(03)00252-510.1016/S0021-9290(03)00252-514757459
- Hoang SK, Abousleiman YN. Correspondence principle between anisotropic poroviscoelasticity and poroelasticity using micromechanics and application to compression of orthotropic rectangular strips. Journal of Applied Physics, 2012:112(4):044907. http://dx.doi.org/10.1063/1.474829310.1063/1.4748293
- Huyghe JM, Malakpoor K, Wilson W. On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. Journal of biomechanical engineering, 2009:131(4):044504. http://dx.doi.org/10.1115/1.30495311927544610.1115/1.3049531
- Aslani P, Kennedy RA. Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. Journal of controlled release, 1996:42(175-82. http://dx.doi.org/10.1016/0168-3659(96)01369-710.1016/0168-3659(96)01369-7
- Lu XL, Wan LQ, Guo X, Mow VC. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. Journal of biomechanics, 2010:43(4):673-679. http://dx.doi.org/10.1016/j.jbiomech.2009.10.02610.1016/j.jbiomech.2009.10.02619896670
- Duan Z, An Y, Zhang J, Jiang H. The effect of large deformation and material nonlinearity on gel indentation. Acta Mechanica Sinica, 2012:28(4),1058-1067. http://dx.doi.org/10.1007/s10409-012-0122-710.1007/s10409-012-0122-7
- Wilson W, van Donkelaar CC, Huyghe JM. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. Journal of biomechanical engineering, 2005:127(1):158-165. http://dx.doi.org/10.1115/1.18353611586879810.1115/1.1835361
- Jackson AR, Yuan TY, Huang CY, Gu WY. A Conductivity Approach to Measuring Fixed Charge Density in Intervertebral Disc Tissue. Annals of biomedical engineering, 2009:37(12):2566-2573. http://dx.doi.org/10.1007/s10439-009-9792-010.1007/s10439-009-9792-019757059
- Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules, 1998:31(23):8382-8395. http://dx.doi.org/10.1021/ma980765f
- Gu WY, Yao H, Vega AL, Flagler D. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Annals of biomedical engineering, 2004:32(12):1710-1717. http://dx.doi.org/10.1007/s10439-004-7823-410.1007/s10439-004-7823-415675682
- Gu WY, Yao H, Huang CY, Cheung HS. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. Journal of biomechanics, 2003:36(4):593-598. http://dx.doi.org/10.1016/S0021-9290(02)00437-21260034910.1016/S0021-9290(02)00437-2
- Lai WM, Mow VC, Roth V. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. Journal of biomechanical engineering, 1981:103(2):61-66. http://dx.doi.org/10.1115/1.313826110.1115/1.31382617278183
- O'Shaughnessy B, Yang Q. Manning-Oosawa counterion condensation. Physical review letters, 2005:94(4):048302. http://dx.doi.org/10.1103/PhysRevLett.94.0483021578360710.1103/PhysRevLett.94.048302
- Sigma-Aldrich [Internet]. Dulbecco's Modified Eagle's Medium Formulation [Updated cited 2014 April 14]. Available from: http://www.sigmaaldrich.com/life-science/cell-culture/learning-center/media-formulations/dme.html
- Perry RH, Green DW, Maloney, JO. Perry's chemical engineer's handbook. McGraw-Hill Book; 1984.
- Bekin S, Sarmad S, Gürkan K, Yenici G, Keçeli G, Gürdağ G. Dielectric, thermal, and swelling properties of calcium ion‐ crosslinked sodium alginate film. Polymer Engineering & Science. 2013
- Binns JS, Craig DQM, Hill RM, Davies MC, Melia CD, Newton JM, Dielectric characterisation of sodium alginate gels. Journal of Materials Chemistry, 1992:2(5):545-549. http://dx.doi.org/10.1039/jm992020054510.1039/jm9920200545
- Lin SP, Kyriakides TR, Chen JJJ. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays. Biomaterials, 2009:30(17):3110-3117. http://dx.doi.org/10.1016/j.biomaterials.2009.03.01710.1016/j.biomaterials.2009.03.017
- Sawada A. Tarumi K, Naemura S. Effects of electric double layer and space charge polarization by plural kinds of ions on complex dielectric constant of liquid crystal materials. Japanese journal of applied physics, 1991:38(3R):1418.
- Bordi F, Cametti C, Colby RH. Dielectric spectroscopy and conductivity of polyelectrolyte solutions. Journal of Physics: Condensed Matter, 2004:16(49):R1423. http://dx.doi.org/10.1088/0953-8984/16/49/R01
- Sawada A. Internal electric fields of electrolytic solutions induced by space-charge polarization. Journal of applied physics, 2006:100(7):074103. http://dx.doi.org/10.1063/1.235544910.1063/1.2355449
- Thoumine O, Ott A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. Journal of cell science, 1997:110(17):2109-2116.9378761
- Park S, Koch D, Cardenas R, Käs J, Shih CK. Cell motility and local viscoelasticity of fibroblasts. Biophysical journal, 2005:89(6):4330-4342. http://dx.doi.org/10.1529/biophysj.104.05346210.1529/biophysj.104.05346216199496
- Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell, 1994:77(4):477-478. http://dx.doi.org/10.1016/0092-8674(94)90209-710.1016/0092-8674(94)90209-78187171
- Ingber DE. Mechanochemical switching between growth and differentiation by extracellular matrix, In: Lanza RP, Langer R, Chick WL, editors. Principles of tissue engineering. Austin, TX: R.G. Landes Company, 1997:89-100.
- Chiquet M, Tunc-Civelek V, Sarasa-Renedo A. Gene regulation by mechanotransduction in fibroblasts. Applied Physiology, Nutrition, and Metabolism, 2007:32(5):967-973. http://dx.doi.org/10.1139/H07-05310.1139/H07-053
- Ko KS, McCulloch CA. Intercellular mechanotransduction: cellular circuits that coordinate tissue responses to mechanical loading. Biochemical and biophysical research communications, 2001:285(5):1077-1083. http://dx.doi.org/10.1006/bbrc.2001.51771147876310.1006/bbrc.2001.5177
- Shyy JY, Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Current opinion in cell biology, 1997:9(5):707-713. http://dx.doi.org/10.1016/S0955-0674(97)80125-1933087510.1016/S0955-0674(97)80125-1
- Van Den Brink GR, Bloemers SM, Van Den Blink B, Tertoolen LG, Van Deventer SJ, Peppelenbosch MP. Study of calcium signaling in non‐excitable cells. Microscopy research and technique, 1999:46(6):418-433. http://dx.doi.org/10.1002/(SICI)1097-0029(19990915)46:6<418::AID-JEMT9>3.0.CO;2-010.1002/(SICI)1097-0029(19990915)46:6<;418::AID-JEMT9>3.0.CO;2-010504218
- Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annual review of physiology, 1997:59(1):575-599. http://dx.doi.org/10.1146/annurev.physiol.59.1.575907477810.1146/annurev.physiol.59.1.575
- Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell, 1997:88(1):39-48. http://dx.doi.org/10.1016/S0092-8674(00)81856-510.1016/S0092-8674(00)81856-59019403
- Walker RG, Willingham AT, Zuker CS. A Drosophila mechanosensory transduction channel. Science, 2000:287(5461):2229-2234. http://dx.doi.org/10.1126/science.287.5461.22291074454310.1126/science.287.5461.2229
- Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochemical and biophysical research communications, 2005:328(3):751-755. http://dx.doi.org/10.1016/j.bbrc.2004.12.0871569441010.1016/j.bbrc.2004.12.087
- Wright MO, Stockwell RA, Nuki G. Response of plasma membrane to applied hydrostatic pressure in chondrocytes and fibroblasts. Connective tissue research, 1992:28(1-2):49-70. http://dx.doi.org/10.3109/03008209209014227162849010.3109/03008209209014227
- Shi ZD, Tarbell JM. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Annals of biomedical engineering, 2011:39(6):1608-1619. http://dx.doi.org/10.1007/s10439-011-0309-22147975410.1007/s10439-011-0309-2
- Shoichet MS, Li RH, White ML, Winn SR. Stability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agarose. Biotechnology and bioengineering, 2006:50(4):374-381. http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-I
- Ko KS, Arora PD, McCulloch CA. Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. Journal of Biological Chemistry, 2001:276(38):35967-35977. http://dx.doi.org/10.1074/jbc.M10410620010.1074/jbc.M104106200
- Harootunian AT, Kao JP, Paranjape S, Tsien RY. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science, 1991:251(4989), 75-78. http://dx.doi.org/10.1126/science.1986413198641310.1126/science.1986413
- McNeil SE, Hobson SA, Nipper V, Rodland, KD. Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. Journal of Biological Chemistry, 1998:273(2):1114-1120. http://dx.doi.org/10.1074/jbc.273.2.111410.1074/jbc.273.2.1114
- De Roos AD, Willems PH, Van Zoelen EJ, Theuvenet AP. Synchronized Ca2+ signaling by intercellular propagation of Ca2+ action potentials in NRK fibroblasts. American Journal of Physiology-Cell Physiology, 1997:273(6):C1900-C1907.10.1152/ajpcell.1997.273.6.C1900
- Breitwieser GE. Extracellular calcium as an integrator of tissue function. The international journal of biochemistry & cell biology, 2008:40(8):1467-1480. http://dx.doi.org/10.1016/j.biocel.2008.01.01910.1016/j.biocel.2008.01.01918328773
- DuFort CC, Paszek MJ, Weaver, VM. Balancing forces: architectural control of mechanotransduction. Nature Reviews: Molecular cell biology, 2011:12(5):308-319. http://dx.doi.org/10.1038/nrm31122150898710.1038/nrm3112