Have a personal or library account? Click to login
Isoconductivity method to study adhesion of yeast cells to gold electrode Cover

Isoconductivity method to study adhesion of yeast cells to gold electrode

Open Access
|Aug 2014

References

  1. Woodward AM, Kell DB. On the nonlinear dielectric properties of biological Systems: Saccharomyces cerevisiae. Bioelectroch. Bioener. 1990; 24: 83–100. http://dx.doi.org/10.1016/0302-4598(90)85013-810.1016/0302-4598(90)85013-8
  2. Woodward AM, Kell DB. Confirmation by using mutant strains that the membrane-bound H+-ATPase is the major source of non-linear dielectricity in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1991; 84: 91–95. http://dx.doi.org/10.1111/j.1574-6968.1991.tb04575.x10.1111/j.1574-6968.1991.tb04575.x
  3. Woodward AM, Kell DB. Dual-frequency excitation: a novel method for probing the nonlinear dielectric properties of biological systems, and its application to suspensions of S. cerevisiae. J. Electroanal. Chem. 1991; 320: 395–413. http://dx.doi.org/10.1016/0022-0728(91)85655-910.1016/0022-0728(91)85655-9
  4. Ruiz GA, Felice CJ, Valentinuzzi ME.Non-linear response of electrode-electrolyte interface at high current density. Chaos Sol. Fract. 2005; 25: 649–654. http://dx.doi.org/10.1016/j.chaos.2004.11.029
  5. Ruiz GA, Felice CJ. Non-linear response of an electrode– electrolyte interface impedance with the frequency. Chaos Sol. Fract. 2007; 31: 327–335. http://dx.doi.org/10.1016/j.chaos.2005.09.06410.1016/j.chaos.2005.09.064
  6. Nawarathna D, Claycomb JR, Miller J, Benedik MJ. Nonlinear dielectric spectroscopy of live cells using superconducting quantum interference devices. App. Phys. Lett. 2004; 86: 23902–23903. http://dx.doi.org/10.1063/1.1844036
  7. Nawarathna D, Miller J, Claycomb JR, Cardenas G, Warmflash D. Harmonic response of cellular membrane pumps to low frequency electric fields. Phys. Rev. Lett. 2005; 95: 158103-158104. http://dx.doi.org/10.1103/PhysRevLett.95.1581031624176610.1103/PhysRevLett.95.158103
  8. Nawarathna D, Miller J, Claycomb JR, Cardenas G, Gardner J, Warmflash D, Miller J. Harmonic generation by yeast cells in response to low-frequency electric fields. Phys. Rev. E. 2006; 73: 51914-51916. http://dx.doi.org/10.1103/PhysRevE.73.05191410.1103/PhysRevE.73.051914
  9. Treo E, Felice CJ. Non-linear dielectric spectroscopy of microbiological suspensions. Biomed. Eng. Online. 2005; 8: 19. http://dx.doi.org/10.1186/1475-925X-8-19
  10. Blake-Coleman BC, Hutchings MJ, Silley P. Harmonic 'signatures' of microorganisms. Biosens. Bioelectron. 1994; 9: 231-242. http://dx.doi.org/10.1016/0956-5663(94)80126-6806059310.1016/0956-5663(94)80126-6
  11. Mu-oz-Berbel X, Vigués N, Mas J, Toby A, Jenkins A, Mu-oz FJ.Impedimetric characterization of the changes produced in the electrode-solution interface by bacterial attachment. Electrochem. Commun. 2007; 9: 2654-2660. http://dx.doi.org/10.1016/j.elecom.2007.08.011
  12. Mu-oz-Berbel X, Vigués N, Jenkins A, Mas J, Mu-oz FJ. Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage. Biosens. Bioelectron. 2008; 23: 1540-1546. http://dx.doi.org/10.1016/j.bios.2008.01.00710.1016/j.bios.2008.01.00718308537
  13. Mu-oz-Berbel X, García-Aljaro C, Mu-oz FJ.Impedimetric approach for monitoring the formation of biofilms on metallic surfaces and the subsequent application to the detection of bacteriophages. Electrochim. Acta. 2008; 53: 5739-5744. http://dx.doi.org/10.1016/j.electacta.2008.03.050
  14. Mu-oz-Berbel X, Vigués N, Mas J, Mu-oz FJ, Cortina-Puig M. Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks. Biosens. Bioelectron. 2008; 24: 958-962. http://dx.doi.org/10.1016/j.bios.2008.07.05010.1016/j.bios.2008.07.050
  15. Vogt H. The incremental Ohmic resistance caused by bubbles adhering to an electrode. J. Appl. Electrochem. 1983; 13: 87-88. http://dx.doi.org/10.1007/BF0061589110.1007/BF00615891
  16. Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 2007; 34: 577-588. http://dx.doi.org/10.1007/s10295-007-0234-410.1007/s10295-007-0234-417619090
  17. Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J. Appl. Bacteriol. 1993; 75: 499-511. http://dx.doi.org/10.1111/j.1365-2672.1993.tb01587.x829430310.1111/j.1365-2672.1993.tb01587.x
  18. Gilbert P, Evans D, Evans E, Duguid I, Brown M. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J. Appl. Bacteriol. 1991; 71: 72-77. http://dx.doi.org/10.1111/j.1365-2672.1991.tb04665.x1680117
  19. Van Loosdrecht M, Lyklema J, Norde W, Schroa G, Zehnder A. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 1987; 53: 1898–1901.
  20. Dunne M. Bacterial adhesion: seen any good biofilms lately?. Clin. Microbiol. Rev. 2002; 15: 155–166. http://dx.doi.org/10.1128/CMR.15.2.155-166.20021193222810.1128/CMR.15.2.155-166.2002
  21. Muñoz-Berbel X, Vigués N, Cortina-Puig M, Escudé R, García-Aljaro C, Mas J, Xavier Mu-oz F. Impedimetric approach for monitoring bacterial culture based on the changes in the magnitude of the interface capacitance. Anal. Methods. 2010; 2: 1036-1042. http://dx.doi.org/10.1039/c0ay00050g10.1039/c0ay00050g
  22. Futschik K, PfutznerH. Electrode andmedia impedance for detection and characterization of microorganisms. Proceedings RC IEEE-EMBS & 14th BMESI. 1995; 1.75-1.76.
  23. Liju Y, Chuanmin R, Yanbin L. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron. 2003; 19: 495-502. http://dx.doi.org/10.1016/S0956-5663(03)00229-X10.1016/S0956-5663(03)00229-X14623474
  24. Manli G, Jinhua Ch, Xubin Y, Kun Ch, Lihua N, Shouzhuo Y. Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy. Biochim. Biophys. Acta. 2006; 1760: 432-439.10.1016/j.bbagen.2005.11.01116388905
  25. Bayoudha S, Othmaneb A, Ponsonnet L, Ouada HB. Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber. Coll. Surf. A. 2008; 318: 291-300. http://dx.doi.org/10.1016/j.colsurfa.2008.01.00510.1016/j.colsurfa.2008.01.005
  26. Hondroulis E, Liu Ch, Li ChZ. Nanotechnology. 2010; 21: 315103doi:10.1088/0957-4484/21/31/315103. http://dx.doi.org/10.1088/0957-4484/21/31/31510310.1088/0957-4484/21/31/31510320622302
  27. Kregiel D, Berlowska J, Szubzda B. Novel permittivity test for determination of yeast surface charge and flocculation abilities. J. Ind. Microbiol. Biotechnol. 2012; 39:1881–1886. http://dx.doi.org/10.1007/s10295-012-1193-y2297603910.1007/s10295-012-1193-y
  28. Poortinga AT, Bos R, Norde W, Busscher H. Electric double layer interactions in bacterial adhesion to surfaces. Surf. Sci. Rep. 2002; 47: 1–32. http://dx.doi.org/10.1016/S0167-5729(02)00032-810.1016/S0167-5729(02)00032-8
  29. Van der Wal A, Norde W, Zehnder AJB, Lyklema J. Determination of the total charge in the cell walls of gram-positive bacteria. Coll. Surf. B Bioin. 1997; 9: 81–100. http://dx.doi.org/10.1016/S0927-7765(96)01340-910.1016/S0927-7765(96)01340-9
  30. Valentinuzzi ME. Understanding the human machine, a primer for Bioengineering vol 4, 1st ed. New Jersey: World Scientific Publishing Company; 2004. http://dx.doi.org/10.1142/5597
  31. Grosse C. Relaxation Mechanisms of Homogeneous Particles and Cells Suspended in Aqueous Electrolyte Solutions. In: Delgado A, editor. Interfacial Electrokinetics and Electrophoresis. New York: Marcel Dekker Inc.; 2002.P. 277– 327.
DOI: https://doi.org/10.5617/jeb.809 | Journal eISSN: 1891-5469
Language: English
Page range: 40 - 47
Submitted on: Feb 12, 2014
Published on: Aug 21, 2014
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Gabriel A. Ruiz, Martín L. Zamora, Carmelo J. Felice, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.