References
- Sun T, Gawad S, Bernabini C, Green NG, Morgan H. Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Meas. Sci. Technol. 2007 Jul.20;18(9):2859–68. http://dx.doi.org/10.1088/0957-0233/18/9/01510.1088/0957-0233/18/9/015
- K'Owino IO, Sadik OA. Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring. Electroanalysis. 2005 Dec.;17(23):2101–13. http://dx.doi.org/10.1002/elan.20050337110.1002/elan.200503371
- Miklavčič D, Pavšelj N, Hart FX. Electric properties of tissues. Wiley Encyclopedia of Biomedical Engineering. Wiley Online Library; 2006.
- Paulson KS, Pidcock MK, McLeod CN. A Probe for Organ Impedance Measurement. IEEE Trans. Biomed. Eng. 2004 Oct.;51(10):1838–44. http://dx.doi.org/10.1109/TBME.2004.83151810.1109/TBME.2004.83151815490831
- Foster KR, Lukaski HC. Whole-body impedance--what does it measure? The American journal of clinical nutrition. Am Soc Nutrition; 1996;64(3):388S–396S.
- Tanabe RF, de Azevedo ZMA, Fonseca VM, Peixoto MVM, Anjos dos LA, Gaspar-Elsas MIC, et al. Distribution of bioelectrical impedance vector values in multi-ethnic infants and pre-school children. Clinical Nutrition. Elsevier Ltd; 2012 Feb.1;31(1):144–8. http://dx.doi.org/10.1016/j.clnu.2011.08.006
- Fung YC. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag; 1993.
- Demou ZN. Gene Expression Profiles in 3D Tumor Analogs Indicate Compressive Strain Differentially Enhances Metastatic Potential. Ann Biomed Eng. 2010 Jun. 18;38(11):3509–20. http://dx.doi.org/10.1007/s10439-010-0097-010.1007/s10439-010-0097-020559731
- Ingber DE. Cellular mechanotransduction: putting all the pieces together again. The FASEB journal. FASEB; 2006;20(7):811–27. http://dx.doi.org/10.1096/fj.05-5424rev10.1096/fj.05-5424rev
- Knezevich BA. Trauma nursing: principles and practice. Appleton-Century-Crofts; 1986.
- Berry GP, Bamber JC, Mortimer PS, Bush NL, Miller NR, Barbone PE. The Spatio-Temporal Strain Response of Oedematous and Nonoedematous Tissue to Sustained Compression In Vivo. Ultrasound in Medicine & Biology. Elsevier; 2008;34(4):617–29.10.1016/j.ultrasmedbio.2007.10.007
- Dodde RE, Miller SF, Geiger JD, Shih AJ. Thermal-Electric Finite Element Analysis and Experimental Validation of Bipolar Electrosurgical Cautery. J. Manuf. Sci. Eng. 2008;130(2):021015. http://dx.doi.org/10.1115/1.290285810.1115/1.2902858
- Khanna A, Gougoulias N, Maffulli N. Intermittent pneumatic compression in fracture and soft-tissue injuries healing. British Medical Bulletin. 2008Dec.5;88(1):147–56. http://dx.doi.org/10.1093/bmb/ldn02410.1093/bmb/ldn02418596049
- Rylander CG, Stumpp OF, Milner TE, Kemp NJ, Mendenhall JM, Diller KR, et al. Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt. 2006;11(4):041117. http://dx.doi.org/10.1117/1.234320810.1117/1.234320816965145
- Keshtkar A. Design and construction of small sized pencil probe to measure bio-impedance. Medical Engineering & Physics. 2007 Nov.;29(9):1043–8. http://dx.doi.org/10.1016/j.medengphy.2006.10.0101711869110.1016/j.medengphy.2006.10.010
- Lepetit J, Culioli J. Mechanical properties of meat. Meat Science. Elsevier; 1994;36(1-2):203–37. http://dx.doi.org/10.1016/0309-1740(94)90042-610.1016/0309-1740(94)90042-6
- Lepetit J, Sale P, Favier R, Dalle R. Electrical impedance and tenderisation in bovine meat. Meat Science. Elsevier; 2002;60(151–62. http://dx.doi.org/10.1016/S0309-1740(01)00104-810.1016/S0309-1740(01)00104-8
- Kahraman S, Alber M. Predicting the physico-mechanical properties of rocks from electrical impedance spectroscopy measurements. International Journal of Rock Mechanics and Mining Sciences. 2006 Jun.;43(4):543–53. http://dx.doi.org/10.1016/j.ijrmms.2005.09.01310.1016/j.ijrmms.2005.09.013
- González-Correa CA, Brown BH, Smallwood RH, Walker DC, Bardhan KD. Electrical bioimpedance readings increase with higher pressure applied to the measuring probe. Physiol. Meas. 2005 Mar.30;26(2):S39–S47. http://dx.doi.org/10.1088/0967-3334/26/2/00410.1088/0967-3334/26/2/00415798245
- Tsai JZ, Cao H, Tungjitkusolmun S, Woo EJ, Vorperian VR, Webster JG. Dependence of apparent resistance of four-electrode probes on insertion depth. IEEE Trans. Biomed. Eng. IEEE; 2000;47(1):41–8. http://dx.doi.org/10.1109/10.81761810.1109/10.817618
- Keshtkar A, Keshtkar A. The effect of applied pressure on the electrical impedance of the bladder tissue using small and large probes. Journal of Medical Engineering & Technology. Informa UK Ltd UK; 2008;32(6):505–11.
- Keshtkar A, Keshtkar A. Probe pressure optimisation in bio-impedance spectroscopy. International Journal of Medical Engineering and Informatics. Inderscience; 2011;3(1):78–83.10.1504/IJMEI.2011.039078
- Dodde RE, Bull JL, Shih AJ. Bioimpedance of soft tissue under compression. Physiol. Meas. 2012 May 24;33(6):1095–109. http://dx.doi.org/10.1088/0967-3334/33/6/109510.1088/0967-3334/33/6/109522621935
- Righetti R, Ophir J, Srinivasan S, Krouskop TA. The feasibility of using elastography for imaging the Poisson's ratio in porous media. Ultrasound in Medicine & Biology. 2004 Feb.;30(2):215–28. http://dx.doi.org/10.1016/j.ultrasmedbio.2003.10.0221499867410.1016/j.ultrasmedbio.2003.10.022
- Kim YT, Kim HC, Inada-Kim M, Jung SS, Yun YH, Jho MJ, et al. Evaluation of Tissue Mimicking Quality of Tofu for Biomedical Ultrasound. UMB. World Federation for Ultrasound in Medicine & Biology; 2009 Mar.1;35(3):472–81. http://dx.doi.org/10.1016/j.ultrasmedbio.2008.09.00510.1016/j.ultrasmedbio.2008.09.005
- Aguilera JM, Stanley DW. Microstructural principles of food processing and engineering. Springer; 1999.
- Li X, Toyoda K, Ihara I. Coagulation process of soymilk characterized by electrical impedance spectroscopy. Journal of Food Engineering. Elsevier Ltd; 2011 Aug. 1;105(3):563–8. http://dx.doi.org/10.1016/j.jfoodeng.2011.03.023
- Li XS, Toyoda K. Monitoring of the coagulation process of soymilk by an integrated electrical sensing and control system. Mathematical and Computer Modelling. Elsevier Ltd; 2011 Dec.2;:1–8.
- Wu J. Tofu as a tissue-mimicking material. UMB. Elsevier; 2001;27(9):1297–300.
- Christensen RM. Theory of viscoelasticity. Dover Publications; 2010.
- Stogryn A. Equations for calculating the dielectric constant of saline water (Correspondence). Microwave Theory and Techniques, IEEE Transactions on. IEEE; 1971;19(8):733–6.10.1109/TMTT.1971.1127617
- Li X, Toyoda K. Monitoring of coagulation process of soymilk by an integrated electrical sensing and control system. Mathematical and Computer Modelling. Elsevier; 2011.
- Dodde R. Bioimpedance of soft tissue under compression and applications to electrosurgery. PhD Thesis. University of Michigan, USA, 2012.
- Brown B, Wilson A, Bertemes-Filho P. Bipolar and tetrapolar transfer impedance measurements from volume conductor. Electronics Letters. IET; 2000;36(25):2060–2.10.1049/el:20001439
- Grimnes S, Martinsen ØG. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. J. Phys. D: Appl. Phys. 2006 Dec.15;40(1):9–14. http://dx.doi.org/10.1088/0022-3727/40/1/S02
- Scharfetter H, Hartinger P, Hinghofer-Szalkay H, Hutten H. A model of artefacts produced by stray capacitance during whole body or segmental bioimpedance spectroscopy. Physiol. Meas. IOP Publishing; 1998;19:247. http://dx.doi.org/10.1088/0967-3334/19/2/01210.1088/0967-3334/19/2/012
- Bolton M, Ward L, Khan A, Campbell I, Nightingale P, Dewit O, et al. Sources of error in bioimpedance spectroscopy. Physiol. Meas. IOP Publishing; 1998;19:235. http://dx.doi.org/10.1088/0967-3334/19/2/01110.1088/0967-3334/19/2/011
- McEwan A, Cusick G, Holder DS. A review of errors in multi-frequency EIT instrumentation. Physiol. Meas. 2007 Jun.26;28(7):S197–S215. http://dx.doi.org/10.1088/0967-3334/28/7/S151766463610.1088/0967-3334/28/7/S15
- Buendia R, Seoane F, Gil-Pita R. A novel approach for removing the hook effect artefact from Electrical Bioimpedance spectroscopy measurements. J. Phys.: Conf. Ser. 2010 May19;224:012126.
- Buendia R, Seoane F, Gil-Pita R. Experimental validation of a method for removing the capacitive leakage artifact from electrical bioimpedance spectroscopy measurements. Meas. Sci. Technol. 2010 Oct.6;21(11):115802. http://dx.doi.org/10.1088/0957-0233/21/11/11580210.1088/0957-0233/21/11/115802
- Abramowitch SD, Woo SLY. An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory. J. Biomech. Eng. 2004;126(1):92. http://dx.doi.org/10.1115/1.16455281517113410.1115/1.1645528