Have a personal or library account? Click to login
Impedance detection of the electrical resistivity of the wound tissue around deep brain stimulation electrodes permits registration of the encapsulation process in a rat model Cover

Impedance detection of the electrical resistivity of the wound tissue around deep brain stimulation electrodes permits registration of the encapsulation process in a rat model

Open Access
|Apr 2017

References

  1. Krack P, Hariz MI, Baunez C, Guridi J, Obeso JA. Deep brain stimulation: from neurology to psychiatry? Trends Neurosci. 2010;33:474-84. https://doi.org/10.1016/j.tins.2010.07.002
  2. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, Jr., et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. Jama. 2009;301:63-73. https://doi.org/10.1001/jama.2008.929
  3. Moro E, Lozano AM, Pollak P, Agid Y, Rehncrona S, Volkmann J, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Mov Disord. 2010;25:578-86. https://doi.org/10.1002/mds.22735
  4. Pizzolato G, Mandat T. Deep brain stimulation for movement disorders. Front Integr Neurosci. 2012;6:2. https://doi.org/10.3389/fnint.2012.00002
  5. Gimsa U, Schreiber U, Habel B, Flehr J, van Rienen U, Gimsa J. Matching geometry and stimulation parameters of electrodes for deep brain stimulation experimentsnumerical considerations. J Neurosci Methods. 2006;150:212-27. https://doi.org/10.1016/j.jneumeth.2005.06.013
  6. Cheung T, Tagliati M. Deep brain stimulation: can we do it better? Clin Neurophysiol. 2010;121:1979-80. https://doi.org/10.1016/j.clinph.2010.05.024
  7. Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep brain stimulation with a constantcurrent device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11:140-9. https://doi.org/10.1016/S1474-4422(11)70308-8
  8. Gross RE, McDougal ME. Technological advances in the surgical treatment of movement disorders. Curr Neurol Neurosci Rep. 2013;13:371. https://doi.org/10.1007/s11910-013-0371-2
  9. Lettieri C, Rinaldo S, Devigili G, Pisa F, Mucchiut M, Belgrado E, et al. Clinical outcome of deep brain stimulation for dystonia: constant-current or constant-voltage stimulation? A non-randomized study. Eur J Neurol. 2015;22:919-26. https://doi.org/10.1111/ene.12515
  10. Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neurosci. 2000;99:289-95. https://doi.org/10.1016/S0306-4522(00)00199-8
  11. Salin P, Manrique C, Forni C, Kerkerian-Le Goff L. Highfrequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J Neurosci. 2002;22:5137-48.
  12. Bruet N, Windels F, Carcenac C, Feuerstein C, Bertrand A, Poupard A, et al. Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol. 2003;62:1228-40. https://doi.org/10.1093/jnen/62.12.1228
  13. Windels F, Carcenac C, Poupard A, Savasta M. Pallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleus. J Neurosci. 2005;25:5079-86. https://doi.org/10.1523/JNEUROSCI.0360-05.2005
  14. Boulet S, Lacombe E, Carcenac C, Feuerstein C, Sgambato-Faure V, Poupard A, et al. Subthalamic stimulation-induced forelimb dyskinesias are linked to an increase in glutamate levels in the substantia nigra pars reticulata. J Neurosci. 2006;26:10768-76. https://doi.org/10.1523/JNEUROSCI.3065-06.2006
  15. Schulte T, Brecht S, Herdegen T, Illert M, Mehdorn HM, Hamel W. Induction of immediate early gene expression by high-frequency stimulation of the subthalamic nucleus in rats. Neurosci. 2006;138:1377-85. https://doi.org/10.1016/j.neuroscience.2005.12.034
  16. Fang X, Sugiyama K, Akamine S, Namba H. Improvements in motor behavioral tests during deep brain stimulation of the subthalamic nucleus in rats with different degrees of unilateral parkinsonism. Brain research. 2006;1120:202-10. https://doi.org/10.1016/j.brainres.2006.08.073
  17. So RQ, McConnell GC, August AT, Grill WM. Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemiParkinsonian rats. IEEE Trans Neural Syst Rehabil Eng. 2012;20:626-35. https://doi.org/10.1109/TNSRE.2012.2197761
  18. Cooperrider J, Furmaga H, Plow E. Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. J Neurosci. 2014;34:9040-50. https://doi.org/10.1523/JNEUROSCI.0953-14.2014
  19. Liu HY, Jin J, Tang JS, Sun WX, Jia H, Yang XP, et al. Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addiction biology. 2008;13:40-6. https://doi.org/10.1111/j.1369-1600.2007.00088.x
  20. Forni C, Mainard O, Melon C, Goguenheim D, Kerkerian-Le Goff L, Salin P. Portable microstimulator for chronic deep brain stimulation in freely moving rats. J Neurosci Methods. 2012;209:50-7. https://doi.org/10.1016/j.jneumeth.2012.05.027
  21. Harnack D, Meissner W, Paulat R, Hilgenfeld H, Müller WD, Winter C, Morgenstern R, Kupsch A. 2008. Continuous high-frequency stimulation in freely moving rats: development of an implantable microstimulation system. J Neurosci Methods 2008;167:278-291 https://doi.org/10.1016/j.jneumeth.2007.08.019
  22. Badstuebner K, Gimsa U, Weber I, Tuchscherer A, Gimsa J. Deep brain stimulation of hemiparkinsonian rats with unipolar and bipolar electrodes for up to 6 weeks – behavioral testing of freely moving animals. Parkinson’s Dis. 2017. (In press).
  23. Ewing SG, Porr B, Riddell J, Winter C, Grace AA. SaBer DBS: a fully programmable, rechargeable, bilateral, chargebalanced preclinical microstimulator for long-term neural stimulation. J Neurosci Methods. 2013;213:228-35. https://doi.org/10.1016/j.jneumeth.2012.12.008
  24. Spieles-Engemann AL, Collier TJ, Sortwell CE. A functionally relevant and long-term model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerations. European J Neurosci. 2010;32:1092-9. https://doi.org/10.1111/j.1460-9568.2010.07416.x
  25. Gubellini P, Kachidian P. Animal models of Parkinson's disease: An updated overview. Revue neurologique. 2015;171:750-61. https://doi.org/10.1016/j.neurol.2015.07.011
  26. Gimsa J, Habel B, Schreiber U, van Rienen U, Strauss U, Gimsa U. Choosing electrodes for deep brain stimulation experiments--electrochemical considerations. J Neurosci Methods. 2005;142:251-65. https://doi.org/10.1016/j.jneumeth.2004.09.001
  27. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophys. 2016;115:19-38. https://doi.org/10.1152/jn.00281.2015
  28. Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5:107-10. https://doi.org/10.1016/0014-2999(68)90164-7
  29. Foster KR, Schwan HP. Dielectric properties of tissues. Handbook of biological effects of electromagnetic fields. 1995;2:25-102.
  30. Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans Med Imaging. 2002;21:638-45. https://doi.org/10.1109/TMI.2002.800606
  31. Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol. 1997;83:1762-7.
  32. Lueck S, Reichert D, Pliquett U, Minor T, Preusse CJ. Bioelectric impedance of the neonatal heart during normothermic ischemia. Biomed Tech. 2013;58: Suppl. 1, Walter de Gruyter. Berlin, Boston. https://doi.org/10.1515/bmt-2013-4452
  33. Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009;6:046001. https://doi.org/10.1088/1741-2560/6/4/046001
  34. Badstübner K, Kröger T, Mix E, Gimsa U, Benecke R, Gimsa J. Electrical impedance properties of deep brain stimulation electrodes during long-term in-vivo stimulation in the Parkinson model of the rat. In: Gabriel J, Schier J, Van Huffel S, Conchon E, Correia C, Fred A, et al., editors. Biomedical Engineering Systems and Technologies. Springer. 2013;357 ISBN:978-3-642-38255-0. pp. 287–97.
  35. Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng. 2007;4:410-23. https://doi.org/10.1088/1741-2560/4/4/007
  36. Duan YY, Clark GM, Cowan RS. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Biomaterials. 2004;25:3813-28. https://doi.org/10.1016/j.biomaterials.2003.09.107
  37. Newbold C, Mergen S, Richardson R, Seligman P, Millard R, Cowan R, et al. Impedance changes in chronically implanted and stimulated cochlear implant electrodes. Cochlear Implants Int. 2014;15:191-9. https://doi.org/10.1179/1754762813Y.0000000050
  38. Grill WM, Mortimer JT. Electrical properties of implant encapsulation tissue. Ann Biomed Eng. 1994;22:23-33. https://doi.org/10.1007/BF02368219
  39. Otto KJ, Johnson MD, Kipke DR. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans Biomed Eng. 2006;53:333-40. https://doi.org/10.1109/TBME.2005.862530
  40. Charlet de Sauvage R, Lima da Costa D, Erre JP, Aran JM. Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea. Hear. Res. 1997;110:119-34. https://doi.org/10.1016/S0378-5955(97)00066-X
  41. Lempka SF, Johnson MD, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC. Theoretical analysis of intracortical microelectrode recordings. J Neural Eng. 2011;8:045006. https://doi.org/10.1088/1741-2560/8/4/045006
  42. Abouzari MS, Berkemeier F, Schmitz G, Wilmer D. On the physical interpretation of constant phase elements. Solid State Ionics. 2009;180:922-7. https://doi.org/10.1016/j.ssi.2009.04.002
  43. Jorcin J-B, Orazem ME, Pébère N, Tribollet B. CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta. 2006;51:1473-9. https://doi.org/10.1016/j.electacta.2005.02.128
  44. MacDonald JR. Impedence Spectroscopy - Emphasizing Solid Materials and Systems. Wiley. 1987:1-346.
  45. Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhoes L. Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J Neuropathol Exp Neurol. 1998;452:229-34. https://doi.org/10.1016/s0022-0728(98)00115-6
  46. Conway BE, Bockris JO'M, White RE. Modern Aspects of Electrochemistry. Springer. 1999. ISBN:978-0306459641
  47. Minnikanti S, Pereira MG, Jaraiedi S, Jackson K, Costa-Neto CM, Li Q, et al. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotubebased electrodes in rat hippocampus. J Neural Eng. 2010;7:16002. https://doi.org/10.1088/1741-2560/7/1/016002
  48. Nowak K, Mix E, Gimsa J, Strauss U, Sriperumbudur KK, Benecke R, et al. Optimizing a rodent model of Parkinson's disease for exploring the effects and mechanisms of deep brain stimulation. Parkinson’s Dis. 2011;2011:414682.
  49. Asami K. Characterization of heterogeneous systems by dielectric spectroscopy. Progress in Polymer Science. 2002;27:1617-59. https://doi.org/10.1016/S0079-6700(02)00015-1
  50. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, Sixth Edition: Hard Cover Edition. Academic Press. 2007. ISBN: 978-0125476126.
  51. Ahmad Z. Polymeric dielectric materials, in Dielectric Material, ed. by Silaghi MA. InTech, Rijeka. 2012; 3-26.
  52. Onaral B, Schwan H. Linear and nonlinear properties of platinum electrode polarisation. Part 1: frequency dependence at very low frequencies. Medical and biological engineering and computing. 1982;20:299-306. https://doi.org/10.1007/BF02442796
  53. Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41:2251. https://doi.org/10.1088/0031-9155/41/11/002
  54. Wintermantel E. Medizintechnik mit biokompatiblen Werkstoffen und Verfahren. Springer. 2002. ISBN:978-3540412618
  55. Stubbe M, Gimsa J. Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells. Biophys. J. 2015;109:194-208. https://doi.org/10.1016/j.bpj.2015.06.021
DOI: https://doi.org/10.5617/jeb.4086 | Journal eISSN: 1891-5469
Language: English
Page range: 11 - 24
Submitted on: Dec 22, 2016
Published on: Apr 17, 2017
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Kathrin Badstübner, Marco Stubbe, Thomas Kröger, Eilhard Mix, Jan Gimsa, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.