References
- Krack P, Hariz MI, Baunez C, Guridi J, Obeso JA. Deep brain stimulation: from neurology to psychiatry? Trends Neurosci. 2010;33:474-84. https://doi.org/10.1016/j.tins.2010.07.002
- Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, Jr., et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. Jama. 2009;301:63-73. https://doi.org/10.1001/jama.2008.929
- Moro E, Lozano AM, Pollak P, Agid Y, Rehncrona S, Volkmann J, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Mov Disord. 2010;25:578-86. https://doi.org/10.1002/mds.22735
- Pizzolato G, Mandat T. Deep brain stimulation for movement disorders. Front Integr Neurosci. 2012;6:2. https://doi.org/10.3389/fnint.2012.00002
- Gimsa U, Schreiber U, Habel B, Flehr J, van Rienen U, Gimsa J. Matching geometry and stimulation parameters of electrodes for deep brain stimulation experimentsnumerical considerations. J Neurosci Methods. 2006;150:212-27. https://doi.org/10.1016/j.jneumeth.2005.06.013
- Cheung T, Tagliati M. Deep brain stimulation: can we do it better? Clin Neurophysiol. 2010;121:1979-80. https://doi.org/10.1016/j.clinph.2010.05.024
- Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep brain stimulation with a constantcurrent device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11:140-9. https://doi.org/10.1016/S1474-4422(11)70308-8
- Gross RE, McDougal ME. Technological advances in the surgical treatment of movement disorders. Curr Neurol Neurosci Rep. 2013;13:371. https://doi.org/10.1007/s11910-013-0371-2
- Lettieri C, Rinaldo S, Devigili G, Pisa F, Mucchiut M, Belgrado E, et al. Clinical outcome of deep brain stimulation for dystonia: constant-current or constant-voltage stimulation? A non-randomized study. Eur J Neurol. 2015;22:919-26. https://doi.org/10.1111/ene.12515
- Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neurosci. 2000;99:289-95. https://doi.org/10.1016/S0306-4522(00)00199-8
- Salin P, Manrique C, Forni C, Kerkerian-Le Goff L. Highfrequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J Neurosci. 2002;22:5137-48.
- Bruet N, Windels F, Carcenac C, Feuerstein C, Bertrand A, Poupard A, et al. Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol. 2003;62:1228-40. https://doi.org/10.1093/jnen/62.12.1228
- Windels F, Carcenac C, Poupard A, Savasta M. Pallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleus. J Neurosci. 2005;25:5079-86. https://doi.org/10.1523/JNEUROSCI.0360-05.2005
- Boulet S, Lacombe E, Carcenac C, Feuerstein C, Sgambato-Faure V, Poupard A, et al. Subthalamic stimulation-induced forelimb dyskinesias are linked to an increase in glutamate levels in the substantia nigra pars reticulata. J Neurosci. 2006;26:10768-76. https://doi.org/10.1523/JNEUROSCI.3065-06.2006
- Schulte T, Brecht S, Herdegen T, Illert M, Mehdorn HM, Hamel W. Induction of immediate early gene expression by high-frequency stimulation of the subthalamic nucleus in rats. Neurosci. 2006;138:1377-85. https://doi.org/10.1016/j.neuroscience.2005.12.034
- Fang X, Sugiyama K, Akamine S, Namba H. Improvements in motor behavioral tests during deep brain stimulation of the subthalamic nucleus in rats with different degrees of unilateral parkinsonism. Brain research. 2006;1120:202-10. https://doi.org/10.1016/j.brainres.2006.08.073
- So RQ, McConnell GC, August AT, Grill WM. Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemiParkinsonian rats. IEEE Trans Neural Syst Rehabil Eng. 2012;20:626-35. https://doi.org/10.1109/TNSRE.2012.2197761
- Cooperrider J, Furmaga H, Plow E. Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. J Neurosci. 2014;34:9040-50. https://doi.org/10.1523/JNEUROSCI.0953-14.2014
- Liu HY, Jin J, Tang JS, Sun WX, Jia H, Yang XP, et al. Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addiction biology. 2008;13:40-6. https://doi.org/10.1111/j.1369-1600.2007.00088.x
- Forni C, Mainard O, Melon C, Goguenheim D, Kerkerian-Le Goff L, Salin P. Portable microstimulator for chronic deep brain stimulation in freely moving rats. J Neurosci Methods. 2012;209:50-7. https://doi.org/10.1016/j.jneumeth.2012.05.027
- Harnack D, Meissner W, Paulat R, Hilgenfeld H, Müller WD, Winter C, Morgenstern R, Kupsch A. 2008. Continuous high-frequency stimulation in freely moving rats: development of an implantable microstimulation system. J Neurosci Methods 2008;167:278-291 https://doi.org/10.1016/j.jneumeth.2007.08.019
- Badstuebner K, Gimsa U, Weber I, Tuchscherer A, Gimsa J. Deep brain stimulation of hemiparkinsonian rats with unipolar and bipolar electrodes for up to 6 weeks – behavioral testing of freely moving animals. Parkinson’s Dis. 2017. (In press).
- Ewing SG, Porr B, Riddell J, Winter C, Grace AA. SaBer DBS: a fully programmable, rechargeable, bilateral, chargebalanced preclinical microstimulator for long-term neural stimulation. J Neurosci Methods. 2013;213:228-35. https://doi.org/10.1016/j.jneumeth.2012.12.008
- Spieles-Engemann AL, Collier TJ, Sortwell CE. A functionally relevant and long-term model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerations. European J Neurosci. 2010;32:1092-9. https://doi.org/10.1111/j.1460-9568.2010.07416.x
- Gubellini P, Kachidian P. Animal models of Parkinson's disease: An updated overview. Revue neurologique. 2015;171:750-61. https://doi.org/10.1016/j.neurol.2015.07.011
- Gimsa J, Habel B, Schreiber U, van Rienen U, Strauss U, Gimsa U. Choosing electrodes for deep brain stimulation experiments--electrochemical considerations. J Neurosci Methods. 2005;142:251-65. https://doi.org/10.1016/j.jneumeth.2004.09.001
- Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophys. 2016;115:19-38. https://doi.org/10.1152/jn.00281.2015
- Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5:107-10. https://doi.org/10.1016/0014-2999(68)90164-7
- Foster KR, Schwan HP. Dielectric properties of tissues. Handbook of biological effects of electromagnetic fields. 1995;2:25-102.
- Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans Med Imaging. 2002;21:638-45. https://doi.org/10.1109/TMI.2002.800606
- Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol. 1997;83:1762-7.
- Lueck S, Reichert D, Pliquett U, Minor T, Preusse CJ. Bioelectric impedance of the neonatal heart during normothermic ischemia. Biomed Tech. 2013;58: Suppl. 1, Walter de Gruyter. Berlin, Boston. https://doi.org/10.1515/bmt-2013-4452
- Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009;6:046001. https://doi.org/10.1088/1741-2560/6/4/046001
- Badstübner K, Kröger T, Mix E, Gimsa U, Benecke R, Gimsa J. Electrical impedance properties of deep brain stimulation electrodes during long-term in-vivo stimulation in the Parkinson model of the rat. In: Gabriel J, Schier J, Van Huffel S, Conchon E, Correia C, Fred A, et al., editors. Biomedical Engineering Systems and Technologies. Springer. 2013;357 ISBN:978-3-642-38255-0. pp. 287–97.
- Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng. 2007;4:410-23. https://doi.org/10.1088/1741-2560/4/4/007
- Duan YY, Clark GM, Cowan RS. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Biomaterials. 2004;25:3813-28. https://doi.org/10.1016/j.biomaterials.2003.09.107
- Newbold C, Mergen S, Richardson R, Seligman P, Millard R, Cowan R, et al. Impedance changes in chronically implanted and stimulated cochlear implant electrodes. Cochlear Implants Int. 2014;15:191-9. https://doi.org/10.1179/1754762813Y.0000000050
- Grill WM, Mortimer JT. Electrical properties of implant encapsulation tissue. Ann Biomed Eng. 1994;22:23-33. https://doi.org/10.1007/BF02368219
- Otto KJ, Johnson MD, Kipke DR. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans Biomed Eng. 2006;53:333-40. https://doi.org/10.1109/TBME.2005.862530
- Charlet de Sauvage R, Lima da Costa D, Erre JP, Aran JM. Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea. Hear. Res. 1997;110:119-34. https://doi.org/10.1016/S0378-5955(97)00066-X
- Lempka SF, Johnson MD, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC. Theoretical analysis of intracortical microelectrode recordings. J Neural Eng. 2011;8:045006. https://doi.org/10.1088/1741-2560/8/4/045006
- Abouzari MS, Berkemeier F, Schmitz G, Wilmer D. On the physical interpretation of constant phase elements. Solid State Ionics. 2009;180:922-7. https://doi.org/10.1016/j.ssi.2009.04.002
- Jorcin J-B, Orazem ME, Pébère N, Tribollet B. CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta. 2006;51:1473-9. https://doi.org/10.1016/j.electacta.2005.02.128
- MacDonald JR. Impedence Spectroscopy - Emphasizing Solid Materials and Systems. Wiley. 1987:1-346.
- Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhoes L. Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J Neuropathol Exp Neurol. 1998;452:229-34. https://doi.org/10.1016/s0022-0728(98)00115-6
- Conway BE, Bockris JO'M, White RE. Modern Aspects of Electrochemistry. Springer. 1999. ISBN:978-0306459641
- Minnikanti S, Pereira MG, Jaraiedi S, Jackson K, Costa-Neto CM, Li Q, et al. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotubebased electrodes in rat hippocampus. J Neural Eng. 2010;7:16002. https://doi.org/10.1088/1741-2560/7/1/016002
- Nowak K, Mix E, Gimsa J, Strauss U, Sriperumbudur KK, Benecke R, et al. Optimizing a rodent model of Parkinson's disease for exploring the effects and mechanisms of deep brain stimulation. Parkinson’s Dis. 2011;2011:414682.
- Asami K. Characterization of heterogeneous systems by dielectric spectroscopy. Progress in Polymer Science. 2002;27:1617-59. https://doi.org/10.1016/S0079-6700(02)00015-1
- Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, Sixth Edition: Hard Cover Edition. Academic Press. 2007. ISBN: 978-0125476126.
- Ahmad Z. Polymeric dielectric materials, in Dielectric Material, ed. by Silaghi MA. InTech, Rijeka. 2012; 3-26.
- Onaral B, Schwan H. Linear and nonlinear properties of platinum electrode polarisation. Part 1: frequency dependence at very low frequencies. Medical and biological engineering and computing. 1982;20:299-306. https://doi.org/10.1007/BF02442796
- Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41:2251. https://doi.org/10.1088/0031-9155/41/11/002
- Wintermantel E. Medizintechnik mit biokompatiblen Werkstoffen und Verfahren. Springer. 2002. ISBN:978-3540412618
- Stubbe M, Gimsa J. Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells. Biophys. J. 2015;109:194-208. https://doi.org/10.1016/j.bpj.2015.06.021