References
- Dean DA, Ramanathan T, Machado D, Sundararajan,R. Electrical Impedance Spectroscopy Study of Biological Tissues. J. Electrostat. 2008;66(3-4):165–77. http://dx.doi.org/10.1016/j.elstat.2007.11.0051925561410.1016/j.elstat.2007.11.005
- Kim BS, Isaacson D, Xia H, Kao TJ et al. A method for analyzing electrical impedance spectroscopy data from breast cancer patients. Physiol Meas. 2007;28(7):S237–46. http://dx.doi.org/10.1088/0967-3334/28/7/S1710.1088/0967-3334/28/7/S1717664638
- Keshtkar A, Salehnia Z, Shokouhi, B. Bladder Cancer Detection Using Electrical Impedance Technique (Tabriz Mark 1). Pathology Research International. 2012;2012:1-5. http://dx.doi.org/10.1155/2012/470101
- Halter RJ, Hartov A, Heaney JA et al. Electrical Impedance Spectroscopy of the Human Prostate. IEEE Transactions on Biomedical Engineering. 2007;54(7):1321-7. http://dx.doi.org/10.1109/TBME.2007.89733110.1109/TBME.2007.897331
- Skourou C, Hoopes PJ, Strawbridge RR, Paulsen KD. Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats. Physiological Meas. 2004;25:335–46. http://dx.doi.org/10.1088/0967-3334/25/1/03710.1088/0967-3334/25/1/037
- Skourou C, Rohr A, Hoopes PJ, Paulsen KD. In vivo EIS characterization of tumour tissue properties is dominated by excess extracellular fluid. Phys. Med. Biol. 2007;52:347–63. http://dx.doi.org/10.1088/0031-9155/52/2/00310.1088/0031-9155/52/2/00317202619
- Van Kreel BK. Multi-frequency bioimpedance measurements of children in intensive care. Med. Biol. Eng. Comput. 2001;39:551–7. http://dx.doi.org/10.1007/BF0234514510.1007/BF0234514511712651
- Lingwood BE, Dunster KR, Colditz PB, Ward LC. Noninvasive measurement of cerebral bioimpedance for detection of cerebral edema in the neonatal piglet. Brain Res. 2002;945:97–105. http://dx.doi.org/10.1016/S0006-8993(02)02744-01211395610.1016/S0006-8993(02)02744-0
- Seoane F, Lindecrantz K, Olsson T et al. Spectroscopy study of the dynamics of the transencephalic electrical impedance in the perinatal brain during hypoxia. Physiol. Meas. 2005;26: 849–63. http://dx.doi.org/10.1088/0967-3334/26/5/02110.1088/0967-3334/26/5/02116088073
- Moissl UM, Wabel MP, Chamney PW et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiological Measurement. 2006;27(9):921-33. http://dx.doi.org/10.1088/0967-3334/27/9/01210.1088/0967-3334/27/9/01216868355
- Wang ZM, Deurenberg P, Guo SS et al. Six-compartment body composition model: Inter-method comparisons of total body fat measurement. International Journal of Obesity. 1998;22:329-37. http://dx.doi.org/10.1038/sj.ijo.080059010.1038/sj.ijo.0800590
- Bertemes-Filho, P, Negri, L, Paterno, AS. Detection of bovine milk adulterants using bioimpedance measurements and artificial neural network. In: 5th European Conference of the International Federation for Medical and Biological Engineering. Budapest: 2011. p. 1275–8. http://dx.doi.org/10.1007/978-3-642-23508-5_330
- Paterno AS, Bertemes-Filho, P, Negri, LH. Efficient computational techniques in bioimpedance spectroscopy. In: Applied Biological Engineering - Principles and Practice. Rijeka: InTech - Open Access Publisher. 2012:1-26. http://dx.doi.org/10.5772/36307
- Bertemes-Filho P. Tissue Characterisation using an Impedance Spectroscopy Probe. PhD thesis. University of Sheffield. 2002. 96 p.
- Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. Academic Press. 2000. 360 p.
- Yúfera A, Rueda A. Design of A CMOS Closed-Loop System Useful for Bio-Impedance Measurements . In: 16th IEEE International Conference on Electronics, Circuits and Systems. Tunisia: 2009. p. 948-51.
- Ferreira J, Seoane F, Ansede A, Bragos R. AD5933-based spectrometer for electrical bioimpedance applications. Journal of Physics: Conference Series. 2010; 224(1):1-4.
- Analog Devices AD5933 Product web site. Accessed on 2010-01-15. Available from: http://www.analog.com/en/AD5933/productsearch.html
- Ruha A, Kostamovaara J, Saynajakangas S. A micropower analog-digital heart rate detector chip. Analog Integrated Circuits and Signal Processing. 1994; 5:147-68. http://dx.doi.org/10.1007/BF0127264910.1007/BF01272649
- Novo A, Gerosa A, Neviani A. A submicrometer CMOS programamable charge pump for implantable pacemarker. Analog Integrated Circuits and Signal Procesing. 2001;21:211-7.
- Yúfera A, Leger G, Rodríguez-Villegas EO et al. An integrated circuit for tissue impedance measure. In: Proc. 2nd Ann. Int. IEEE EMBS. Madison: 2002. p. 88–93.
- Aberg P, Nicander I, Ollmar S. Minimally invasive electrical impedance spectroscopy of skin exemplified by skin cancer assessments. 7. In: IEEE Proc. of the EMBS Annual Int. Conf. Cancun: 2003. p. 3211-14.
- Emtestam L, Nicander I, Strenstrom M, Ollmar S. Electrical impedance of nodular basal cell carcinoma: A pilot study. Dermatology. 1998;197:313-6. http://dx.doi.org/10.1159/00001802310.1159/0000180239873166
- Brown BH, Tidy J, Boston K, et al. Tetrapolar measurement of cervical tissue structure using impedance spectroscopy. In: 20th Annual Int. Conf. on Biomed. Eng. 1998. IEEE Proc. vol 4. p. 2886-9.
- González-Correa CA, Brown BH, Smallwood RH, et al. Virtual Biopsies in Barrett's Esophagus using an Impedance Probe. Annals New York Academy of Scienc. 1999;873:31321. http://dx.doi.org/10.1111/j.1749-6632.1999.tb09479.x
- Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin Cancer Identification Using Multifrequency Electrical Impedance - A Potential Screening Tool . IEEE Transactions on Biomedical Engineering. 2004;51(12):2097102. http://dx.doi.org/10.1109/TBME.2004.836523
- Seoane F, Macías R, Bragós R, Lindecrantz K. Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations. Measurement Science and Technology. 2011;22(11):1-11. http://dx.doi.org/10.1088/0957-0233/22/11/115801
- Lu L, Brown BH. The electronic and electronic interface in an EIT spectroscopy system. Inn. Tech. Biol. Med. 1994;15:97-103.
- Bertemes-Filho P, Brown BH, Wilson AJ. A comparison of modified Howland circuits as current generators with current mirror type circuits. Physiol. Meas. 2000;20:1-6. http://dx.doi.org/10.1088/0967-3334/21/1/301
- Bertemes Filho P, Lima RG, Amato MBP et al. Performance of an Adaptative Multiplexed Current Source used in Electrical Impedance Tomography. In: XX Brazilian Congress Biomed. Eng. 2006; p. 1167-70.
- Seoane F, Bragós R, Lindecranz K. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems: a novel approach. In: IEEE Proc. of the EMBS Annual Int. Conf. New York: 2006. p. 5121-5.
- Yufera A, Rueda A, Munoz J M et al. A tissue impedance measurement chip for myocardial ischemia detection. IEEE Transactions Circuits Syst. 2005;52(12).
- Tsunami D, McNames J, Colbert A et al. Variable Frequency Bioimpedance Instrumentation. In: Annual Int. Conf. of the IEEE EMBS. San Francisco: 2004. p. 1-5.
- Hong, H, Rahal, M, Demosthenous, A et al (2007), Floating Voltage-Controlled Current Sources for Electrical Impedance Tomography, 18th European Conference on Circuit Theory and Design, 2007, pp 208-211. http://dx.doi.org/10.1109/ECCTD.2007.4529573
- Uranga A, Sacristán J, Osés T et al. Electrode-tissue Impedance Measurement CMOS ASIC for Funtional Electrical Stimultion Neuroprostheses. IEEE Transactions on Inst.&Meas. 2007;56(5):2043-50.10.1109/TIM.2007.904479
- Boone KG, Holder DS. Current approaches to analogue instrumentation design in electrical impedance tomography. Physiol. Meas. 1996;17:229-47. http://dx.doi.org/10.1088/0967-3334/17/4/001895362210.1088/0967-3334/17/4/001
- Raghed AO, Geddes LA, Bourland JD et al. Tetrapolar electrode system for measuring physiological events by impedance. Med. Biol. Eng. Comput. 1992;30:115-7. http://dx.doi.org/10.1007/BF02446203164074310.1007/BF02446203
- Jivet I, Dragoi B. On-electrode autonomous current generator for multi-frequency EIT. Physiol. Meas. 2008;29:S193–201. http://dx.doi.org/10.1088/0967-3334/29/6/S1710.1088/0967-3334/29/6/S1718544811
- Casas O, Rosell J et al. A parallel broadband real-time system for electrical impedance tomography. Physiol. Meas. 1996;17:A1–6. http://dx.doi.org/10.1088/0967-3334/17/4A/00210.1088/0967-3334/17/4A/0029001596
- Seoane F, Bragos R, Lindecrantz K, Riu PJ. Current Source Design for Electrical Bioimpedance Spectroscopy. In: Encyclopedia of Healthcare Information Systems. 2008. p. 359-67.
- Seoane F, Bragós R, Lindercrantz K, Riu PJ. Current Source Design for Electrical Bioimpedance Spectroscopy. In: Encyclopedia of Healthcare information Systems. New York: 2008. p. 359-66.
- Vincence VC, Galup-Montoro C, Schneider MC. A High Swing MOS Cascode Bias Circuit. IEEE Trans. Circuits and Systems. 2000;47(11):1325-8. http://dx.doi.org/10.1109/82.88514310.1109/82.885143
- Carvajal RG, Ramírez-Angulo J, López-Martín A et al. The Flipped Voltage Follower: A Useful Cell for Low-Voltage Low-Power Circuit Design. IEEE Transactions on Circuits and Systems. 2005;52(7):1276-91. http://dx.doi.org/10.1109/TCSI.2005.85138710.1109/TCSI.2005.851387
- Salem SB, Fakhfakh A, Loulou M, Loumeau P, Masmoudi N. A 2.5V 0.35μm CMOS Current Conveyor and High Frequency High-Q Band-Pass Filter. In: Proceedings of the 16th International Conference on Microelectronics. Tunis: 2004. p. 328-33. http://dx.doi.org/10.1109/ICM.2004.1434578
- Kumngern M, Moungnoul P, Junnapiya S, Dejhan K. Current-mode universal filter using translinear current conveyors. In: Proceedings of the 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Krabi: 2008. p. 717-20.
- Knobnob B, Kumngern M, Dejhan K. Current-mode quadrature oscillator using translinear current conveyors. In: Proceedings of the 2008 International Symposium on Communications and Information Technologies. Vientiane: 2008. p. 196-9. http://dx.doi.org/10.1109/ISCIT.2008.4700181
- Arslan E, Morgul A. Wideband self-biased CMOS CCII. In: Proceedings of the 2008 PhD research in microelectronics and electronics. Istanbul: 2008. p. 217-20. http://dx.doi.org/10.1109/RME.2008.4595764
- Ibrahim MA, Kuntman H, Cicekoglu O. A very highfrequency CMOS self-biasing complementary folded cascade differential difference current conveyor with application examples. In: Proceedings of the 45th Midwest Symposium on Circuits and Systems, Oklahoma: 2002. p. 279-82.
- Ferri G, Guerrini NC. Low-voltage, low-power CMOS current conveyors. Dordrecht: Kluwer Academic Publishers, 2003.
- Ross AS, Saulnier GJ, Newell JC, Isaacson D. Current source design for electrical impedance tomography. Physiological Measurement. 2003; 24(2):509-16. http://dx.doi.org/10.1088/0967-3334/24/2/3611281243410.1088/0967-3334/24/2/361
- Bertemes-Filho P, Lima RG, Tanaka H. A Current Source using a Negative Impedance Converter (NIC) for Electrical Impedance Tomography (EIT). In: Proceedings of the 17th International Congress on Mechanical Engineering. São Paulo: 2003. p. 83-7.
- Bertemes-Filho P, Paterno AS, Pereira, RM. Multichannel Bipolar Current Source Used in Electrical Impedance Spectroscopy: Preliminary Results. In: World Congress on Medical Physics and Biomedical Engineering. Munich: 2009. p. 657-60.
- Bertemes-Filho P, Vincence VC, Zanatta IX. A Comparison of Modified CMOS Transconductance Amplifiers with Howland Circuit for Low Power Electrical Bioimpedance Instrumentation. In: 5th European Conference of the International Federation for Medical and Biological. Budapest: 2011. p. 1-4. http://dx.doi.org/10.1007/978-3-642-23508-5_53