Have a personal or library account? Click to login
Low power current sources for bioimpedance measurements: a comparison between Howland and OTA-based CMOS circuits Cover

Low power current sources for bioimpedance measurements: a comparison between Howland and OTA-based CMOS circuits

Open Access
|Oct 2012

References

  1. Dean DA, Ramanathan T, Machado D, Sundararajan,R. Electrical Impedance Spectroscopy Study of Biological Tissues. J. Electrostat. 2008;66(3-4):165–77. http://dx.doi.org/10.1016/j.elstat.2007.11.0051925561410.1016/j.elstat.2007.11.005
  2. Kim BS, Isaacson D, Xia H, Kao TJ et al. A method for analyzing electrical impedance spectroscopy data from breast cancer patients. Physiol Meas. 2007;28(7):S237–46. http://dx.doi.org/10.1088/0967-3334/28/7/S1710.1088/0967-3334/28/7/S1717664638
  3. Keshtkar A, Salehnia Z, Shokouhi, B. Bladder Cancer Detection Using Electrical Impedance Technique (Tabriz Mark 1). Pathology Research International. 2012;2012:1-5. http://dx.doi.org/10.1155/2012/470101
  4. Halter RJ, Hartov A, Heaney JA et al. Electrical Impedance Spectroscopy of the Human Prostate. IEEE Transactions on Biomedical Engineering. 2007;54(7):1321-7. http://dx.doi.org/10.1109/TBME.2007.89733110.1109/TBME.2007.897331
  5. Skourou C, Hoopes PJ, Strawbridge RR, Paulsen KD. Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats. Physiological Meas. 2004;25:335–46. http://dx.doi.org/10.1088/0967-3334/25/1/03710.1088/0967-3334/25/1/037
  6. Skourou C, Rohr A, Hoopes PJ, Paulsen KD. In vivo EIS characterization of tumour tissue properties is dominated by excess extracellular fluid. Phys. Med. Biol. 2007;52:347–63. http://dx.doi.org/10.1088/0031-9155/52/2/00310.1088/0031-9155/52/2/00317202619
  7. Van Kreel BK. Multi-frequency bioimpedance measurements of children in intensive care. Med. Biol. Eng. Comput. 2001;39:551–7. http://dx.doi.org/10.1007/BF0234514510.1007/BF0234514511712651
  8. Lingwood BE, Dunster KR, Colditz PB, Ward LC. Noninvasive measurement of cerebral bioimpedance for detection of cerebral edema in the neonatal piglet. Brain Res. 2002;945:97–105. http://dx.doi.org/10.1016/S0006-8993(02)02744-01211395610.1016/S0006-8993(02)02744-0
  9. Seoane F, Lindecrantz K, Olsson T et al. Spectroscopy study of the dynamics of the transencephalic electrical impedance in the perinatal brain during hypoxia. Physiol. Meas. 2005;26: 849–63. http://dx.doi.org/10.1088/0967-3334/26/5/02110.1088/0967-3334/26/5/02116088073
  10. Moissl UM, Wabel MP, Chamney PW et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiological Measurement. 2006;27(9):921-33. http://dx.doi.org/10.1088/0967-3334/27/9/01210.1088/0967-3334/27/9/01216868355
  11. Wang ZM, Deurenberg P, Guo SS et al. Six-compartment body composition model: Inter-method comparisons of total body fat measurement. International Journal of Obesity. 1998;22:329-37. http://dx.doi.org/10.1038/sj.ijo.080059010.1038/sj.ijo.0800590
  12. Bertemes-Filho, P, Negri, L, Paterno, AS. Detection of bovine milk adulterants using bioimpedance measurements and artificial neural network. In: 5th European Conference of the International Federation for Medical and Biological Engineering. Budapest: 2011. p. 1275–8. http://dx.doi.org/10.1007/978-3-642-23508-5_330
  13. Paterno AS, Bertemes-Filho, P, Negri, LH. Efficient computational techniques in bioimpedance spectroscopy. In: Applied Biological Engineering - Principles and Practice. Rijeka: InTech - Open Access Publisher. 2012:1-26. http://dx.doi.org/10.5772/36307
  14. Bertemes-Filho P. Tissue Characterisation using an Impedance Spectroscopy Probe. PhD thesis. University of Sheffield. 2002. 96 p.
  15. Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. Academic Press. 2000. 360 p.
  16. Yúfera A, Rueda A. Design of A CMOS Closed-Loop System Useful for Bio-Impedance Measurements . In: 16th IEEE International Conference on Electronics, Circuits and Systems. Tunisia: 2009. p. 948-51.
  17. Ferreira J, Seoane F, Ansede A, Bragos R. AD5933-based spectrometer for electrical bioimpedance applications. Journal of Physics: Conference Series. 2010; 224(1):1-4.
  18. Analog Devices AD5933 Product web site. Accessed on 2010-01-15. Available from: http://www.analog.com/en/AD5933/productsearch.html
  19. Ruha A, Kostamovaara J, Saynajakangas S. A micropower analog-digital heart rate detector chip. Analog Integrated Circuits and Signal Processing. 1994; 5:147-68. http://dx.doi.org/10.1007/BF0127264910.1007/BF01272649
  20. Novo A, Gerosa A, Neviani A. A submicrometer CMOS programamable charge pump for implantable pacemarker. Analog Integrated Circuits and Signal Procesing. 2001;21:211-7.
  21. Yúfera A, Leger G, Rodríguez-Villegas EO et al. An integrated circuit for tissue impedance measure. In: Proc. 2nd Ann. Int. IEEE EMBS. Madison: 2002. p. 88–93.
  22. Aberg P, Nicander I, Ollmar S. Minimally invasive electrical impedance spectroscopy of skin exemplified by skin cancer assessments. 7. In: IEEE Proc. of the EMBS Annual Int. Conf. Cancun: 2003. p. 3211-14.
  23. Emtestam L, Nicander I, Strenstrom M, Ollmar S. Electrical impedance of nodular basal cell carcinoma: A pilot study. Dermatology. 1998;197:313-6. http://dx.doi.org/10.1159/00001802310.1159/0000180239873166
  24. Brown BH, Tidy J, Boston K, et al. Tetrapolar measurement of cervical tissue structure using impedance spectroscopy. In: 20th Annual Int. Conf. on Biomed. Eng. 1998. IEEE Proc. vol 4. p. 2886-9.
  25. González-Correa CA, Brown BH, Smallwood RH, et al. Virtual Biopsies in Barrett's Esophagus using an Impedance Probe. Annals New York Academy of Scienc. 1999;873:31321. http://dx.doi.org/10.1111/j.1749-6632.1999.tb09479.x
  26. Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin Cancer Identification Using Multifrequency Electrical Impedance - A Potential Screening Tool . IEEE Transactions on Biomedical Engineering. 2004;51(12):2097102. http://dx.doi.org/10.1109/TBME.2004.836523
  27. Seoane F, Macías R, Bragós R, Lindecrantz K. Simple voltage-controlled current source for wideband electrical bioimpedance spectroscopy: circuit dependences and limitations. Measurement Science and Technology. 2011;22(11):1-11. http://dx.doi.org/10.1088/0957-0233/22/11/115801
  28. Lu L, Brown BH. The electronic and electronic interface in an EIT spectroscopy system. Inn. Tech. Biol. Med. 1994;15:97-103.
  29. Bertemes-Filho P, Brown BH, Wilson AJ. A comparison of modified Howland circuits as current generators with current mirror type circuits. Physiol. Meas. 2000;20:1-6. http://dx.doi.org/10.1088/0967-3334/21/1/301
  30. Bertemes Filho P, Lima RG, Amato MBP et al. Performance of an Adaptative Multiplexed Current Source used in Electrical Impedance Tomography. In: XX Brazilian Congress Biomed. Eng. 2006; p. 1167-70.
  31. Seoane F, Bragós R, Lindecranz K. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems: a novel approach. In: IEEE Proc. of the EMBS Annual Int. Conf. New York: 2006. p. 5121-5.
  32. Yufera A, Rueda A, Munoz J M et al. A tissue impedance measurement chip for myocardial ischemia detection. IEEE Transactions Circuits Syst. 2005;52(12).
  33. Tsunami D, McNames J, Colbert A et al. Variable Frequency Bioimpedance Instrumentation. In: Annual Int. Conf. of the IEEE EMBS. San Francisco: 2004. p. 1-5.
  34. Hong, H, Rahal, M, Demosthenous, A et al (2007), Floating Voltage-Controlled Current Sources for Electrical Impedance Tomography, 18th European Conference on Circuit Theory and Design, 2007, pp 208-211. http://dx.doi.org/10.1109/ECCTD.2007.4529573
  35. Uranga A, Sacristán J, Osés T et al. Electrode-tissue Impedance Measurement CMOS ASIC for Funtional Electrical Stimultion Neuroprostheses. IEEE Transactions on Inst.&Meas. 2007;56(5):2043-50.10.1109/TIM.2007.904479
  36. Boone KG, Holder DS. Current approaches to analogue instrumentation design in electrical impedance tomography. Physiol. Meas. 1996;17:229-47. http://dx.doi.org/10.1088/0967-3334/17/4/001895362210.1088/0967-3334/17/4/001
  37. Raghed AO, Geddes LA, Bourland JD et al. Tetrapolar electrode system for measuring physiological events by impedance. Med. Biol. Eng. Comput. 1992;30:115-7. http://dx.doi.org/10.1007/BF02446203164074310.1007/BF02446203
  38. Jivet I, Dragoi B. On-electrode autonomous current generator for multi-frequency EIT. Physiol. Meas. 2008;29:S193–201. http://dx.doi.org/10.1088/0967-3334/29/6/S1710.1088/0967-3334/29/6/S1718544811
  39. Casas O, Rosell J et al. A parallel broadband real-time system for electrical impedance tomography. Physiol. Meas. 1996;17:A1–6. http://dx.doi.org/10.1088/0967-3334/17/4A/00210.1088/0967-3334/17/4A/0029001596
  40. Seoane F, Bragos R, Lindecrantz K, Riu PJ. Current Source Design for Electrical Bioimpedance Spectroscopy. In: Encyclopedia of Healthcare Information Systems. 2008. p. 359-67.
  41. Seoane F, Bragós R, Lindercrantz K, Riu PJ. Current Source Design for Electrical Bioimpedance Spectroscopy. In: Encyclopedia of Healthcare information Systems. New York: 2008. p. 359-66.
  42. Vincence VC, Galup-Montoro C, Schneider MC. A High Swing MOS Cascode Bias Circuit. IEEE Trans. Circuits and Systems. 2000;47(11):1325-8. http://dx.doi.org/10.1109/82.88514310.1109/82.885143
  43. Carvajal RG, Ramírez-Angulo J, López-Martín A et al. The Flipped Voltage Follower: A Useful Cell for Low-Voltage Low-Power Circuit Design. IEEE Transactions on Circuits and Systems. 2005;52(7):1276-91. http://dx.doi.org/10.1109/TCSI.2005.85138710.1109/TCSI.2005.851387
  44. Salem SB, Fakhfakh A, Loulou M, Loumeau P, Masmoudi N. A 2.5V 0.35μm CMOS Current Conveyor and High Frequency High-Q Band-Pass Filter. In: Proceedings of the 16th International Conference on Microelectronics. Tunis: 2004. p. 328-33. http://dx.doi.org/10.1109/ICM.2004.1434578
  45. Kumngern M, Moungnoul P, Junnapiya S, Dejhan K. Current-mode universal filter using translinear current conveyors. In: Proceedings of the 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Krabi: 2008. p. 717-20.
  46. Knobnob B, Kumngern M, Dejhan K. Current-mode quadrature oscillator using translinear current conveyors. In: Proceedings of the 2008 International Symposium on Communications and Information Technologies. Vientiane: 2008. p. 196-9. http://dx.doi.org/10.1109/ISCIT.2008.4700181
  47. Arslan E, Morgul A. Wideband self-biased CMOS CCII. In: Proceedings of the 2008 PhD research in microelectronics and electronics. Istanbul: 2008. p. 217-20. http://dx.doi.org/10.1109/RME.2008.4595764
  48. Ibrahim MA, Kuntman H, Cicekoglu O. A very highfrequency CMOS self-biasing complementary folded cascade differential difference current conveyor with application examples. In: Proceedings of the 45th Midwest Symposium on Circuits and Systems, Oklahoma: 2002. p. 279-82.
  49. Ferri G, Guerrini NC. Low-voltage, low-power CMOS current conveyors. Dordrecht: Kluwer Academic Publishers, 2003.
  50. Ross AS, Saulnier GJ, Newell JC, Isaacson D. Current source design for electrical impedance tomography. Physiological Measurement. 2003; 24(2):509-16. http://dx.doi.org/10.1088/0967-3334/24/2/3611281243410.1088/0967-3334/24/2/361
  51. Bertemes-Filho P, Lima RG, Tanaka H. A Current Source using a Negative Impedance Converter (NIC) for Electrical Impedance Tomography (EIT). In: Proceedings of the 17th International Congress on Mechanical Engineering. São Paulo: 2003. p. 83-7.
  52. Bertemes-Filho P, Paterno AS, Pereira, RM. Multichannel Bipolar Current Source Used in Electrical Impedance Spectroscopy: Preliminary Results. In: World Congress on Medical Physics and Biomedical Engineering. Munich: 2009. p. 657-60.
  53. Bertemes-Filho P, Vincence VC, Zanatta IX. A Comparison of Modified CMOS Transconductance Amplifiers with Howland Circuit for Low Power Electrical Bioimpedance Instrumentation. In: 5th European Conference of the International Federation for Medical and Biological. Budapest: 2011. p. 1-4. http://dx.doi.org/10.1007/978-3-642-23508-5_53
DOI: https://doi.org/10.5617/jeb.380 | Journal eISSN: 1891-5469
Language: English
Page range: 66 - 73
Submitted on: Jun 29, 2012
Published on: Oct 23, 2012
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2012 Pedro Bertemes-Filho, Volney C. Vincence, Marcio M. Santos, Ilson X. Zanatta, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.