Have a personal or library account? Click to login
A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling Cover

A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

Open Access
|Dec 2016

References

  1. Martinsen OG, Grimnes S. Bioimpedance and Bioelectricity Basics, second ed., Academic Press, 2008.
  2. Ackmann JJ, Complex Bioelectric Impedance Measurement System for the Frequency Range from 5 Hz to 1 MHz, Annals of Biomedical Engineering. 1993; 21: 135-146. dx.doi.org/10.1007/BF0236760910.1007/BF02367609
  3. Cheneler D, Bowen J, Kaklamani G. Transient bioimpedance monitoring of mechanotransduction in artificial tissue during indentation. J Electr Bioimp. 2014; 5(1): 55-73. dx.doi.org/10.5617/joeb.869
  4. Bera TK, Seo JK, Kwon H and Nagaraju J, A LabVIEW Based Electrical Bio-Impedance Spectroscopic Data Interpreter (LEBISDI) for Studying The Equivalent Circuit Parameters of Biological Tissues, 15th International Conference on Electrical Bio-Impedance (ICEBI) and 14th Conference on Electrical Impedance Tomography (EIT), Germany, 2013, pp 77.
  5. Koziol L, Pitre Jr JJ, Bull JL, Dodde RE, Kruger G, Vollmer A, Weitzel WF. The feasibility of using compression bioimpedance measurements to quantify peripheral edema. J Electr Bioimp. 2014; 5(1): 99-109. dx.doi.org/10.5617/joeb.929
  6. Bauchot AD, Harker FR, Arnold WM. The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biology and Technology. 2000; 18(1): 9–18. dx.doi.org/10.1016/S0925-5214(99)00056-310.1016/S0925-5214(99)00056-3
  7. Heymsfield S, Zheng J, Wang M, Gao C, Kim JYH, Choi A, ... & Kim I. Evaluation of Novel Hand-held Wireless Bioelectrical Impedance Analysis (BIA) Body Composition Devices. The FASEB Journal. 2015;29(1 Supplement):747-2.
  8. Azevedo, ERFBM, Alonso, KC, Cliquet Jr, A. Body composition assessment by bioelectrical impedance analysis and body mass index in individuals with chronic spinal cord injury. J Electr Bioimp. 2016; 7(1): 2-5. dx.doi.org/10.5617/joeb.2421
  9. Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of Medical Engineering, 2014. dx.doi.org/10.1155/2014/38125127006932
  10. Kahraman A, Hilsenbeck J, Nyga M, Ertle J, Wree A, Plauth M, Gerken G, Canbay AE. Bioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis C, Virology Journal. 2010; 7: 191. dx.doi.org/10.1186/1743-422X-7-1912071287810.1186/1743-422X-7-191
  11. Orazem ME, Tribollet B. Electrochemical Impedance Spectroscopy. Wiley-Inter Sc., 2008. dx.doi.org/10.1002/9780470381588
  12. Macdonald RJ. Impedance Spectroscopy. Annals of Biomedical Engineering. 1992; 20: 289-305. dx.doi.org/10.1007/BF02368532144382510.1007/BF02368532
  13. Bera TK and Nagaraju J. Electrical Impedance Spectroscopic Study of Broiler Chicken Tissues Suitable for The Development of Practical Phantoms in Multifrequency EIT, J Electr Bioimp. 2011; 1: 48–63. dx.doi.org/10.5617/joeb.174
  14. Chakraborty S, Das C, Saha R, Das A, Bera NK, Chattopadhyay, D., Karmakar A, Chattopadhyay D, Chattopadhyay S. Investigating the quasi-oscillatory behavior of electrical parameters with the concentration of D-glucose in its aqueous solution at room temperature by employing impedance spectroscopy technique. J Electr Bioimp. 2015; 6(1): 10-17. dx.doi.org/10.5617/joeb.2363
  15. Sammer M, Laarhoven B, Mejias E, Yntema D, Fuchs EC, Holler G, Brasseur G, Lankmayr, E. Biomass measurement of living Lumbriculus variegatus with impedance spectroscopy. J Electr Bioimp. 2014; 5(1): 92-98. dx.doi.org/10.5617/joeb.934
  16. Ruiz GA, Zamora ML, Felice CJ. Impedance spectroscopy of yeast cells attached to gold electrodes. J Electr Bioimp. 2014; 5(1): 40-47. dx.doi.org/10.5617/joeb.809
  17. Birgersson UH, Birgersson E, Ollmar S. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements. J Electr Bioimp. 2012; 3(1): 51-60. dx.doi.org/10.5617/joeb.400
  18. Röthlingshöfer L, Ulbrich M, Hahne S, Leonhardt S. Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. J Electr Bioimp. 2011; 2(1): 79-85. dx.doi.org/10.5617/joeb.178
  19. Repo T, Paine DH, Taylor AG. Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.), Seed Science Research. 2002; 12: 17-29. dx.doi.org/10.1079/SSR20019410.1079/SSR200194
  20. Chowdhury A, Kanti Bera T, Ghoshal D, Chakraborty B. Electrical Impedance Variations in Banana Ripening: An Analytical Study with Electrical Impedance Spectroscopy. Journal of Food Process Engineering. 2016 (in press). dx.doi.org/10.1111/jfpe.12387
  21. Barsoukov E, Macdonald JR. Impedance Spectroscopy: Theory, Experiment, and Applications. Wiley-Inter Sc.; 2 Ed. 2005.
  22. Gomez-Clapers J, Casanella R, Pallas-Areny R. A novel method to obtain proximal plethysmographic information from distal measurements using the impedance plethysmogram. J Electr Bioimp. 2015; 6(1): 44-48. dx.doi.org/10.5617/joeb.2575
  23. Nyboer J, Kreider MM, Hannapel L. Electrical Impedance Plethysmography - A Physical and Physiologic Approach to Peripheral Vascular Study. Circulation. 1950; 2: 811-821. dx.doi.org/10.1161/01.CIR.2.6.81114783833
  24. Griffths RW, Philpot ME, Chapman BJ, Munday KA. Impedance cardiography: non-invasive cardiac output measurement after burn injury. Int. J. Tissue React. 1981; 3(1): 47-55.7287057
  25. van Eijnatten MA, van Rijssel MJ, Peters RJ, Verdaasdonk RM, Meijer JH. Comparison of cardiac time intervals between echocardiography and impedance cardiography at various heart rates. J Electr Bioimp. 2014; 5(1): 2-8. dx.doi.org/10.5617/joeb.690
  26. Woltjer HH, Bogaard HJ, de Vries PMJM. The technique of impedance cardiography. European Heart Journal. 1997; 18: 1396-1403. dx.doi.org/10.1093/oxfordjournals.eurheartj.a015464945844410.1093/oxfordjournals.eurheartj.a015464
  27. Da Silva JE, De Sá JM, Jossinet J. Classification of breast tissue by electrical impedance spectroscopy. Medical and Biological Engineering and Computing. 2000; 38(1): 26-30. dx.doi.org/10.1007/BF0234468410.1007/BF02344684
  28. Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Transactions on Medical Imaging. 2002; 21(6): 638-645. dx.doi.org/10.1109/TMI.2002.8006061216686010.1109/TMI.2002.800606
  29. Laufer S, Ivorra A, Reuter VE, Rubinsky B, Solomon SB. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiological measurement. 2010; 31(7): 995. dx.doi.org/10.1088/0967-3334/31/7/00910.1088/0967-3334/31/7/009
  30. Halter RJ, Schned A, Heaney J, Hartov A, Schutz S, Paulsen KD. Electrical impedance spectroscopy of benign and malignant prostatic tissues. The Journal of urology. 2008; 179(4): 1580-1586. dx.doi.org/10.1016/j.juro.2007.11.04310.1016/j.juro.2007.11.043
  31. Bonmassar G, Iwaki S, Goldmakher G, Angelone LM, Belliveau JW, Lev MH. On the measurement of electrical impedance spectroscopy (EIS) of the human head. Int. J. Bioelectromagn. 2010; 12(1): 32.21152370
  32. Sanchez B, Vandersteen G, Martin I, Castillo D, Torrego A, Riu PJ, Schoukens J, Bragos R. In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study. Med. Eng. Phys. 2013; 35(7): 949-957. dx.doi.org/10.1016/j.medengphy.2012.09.004
  33. Zheng B, Tublin ME, Klym AH, Gur D. Classification of Thyroid Nodules Using a Resonance-Frequency–Based Electrical Impedance Spectroscopy: A Preliminary Assessment. Thyroid. 2013; 23(7): 854-862. dx.doi.org/10.1089/thy.2012.04132325972310.1089/thy.2012.0413
  34. Kyle AH, Chan CT, Minchinton AI. Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy. Biophysical journal. 1999; 76(5): 2640-2648. dx.doi.org/10.1016/S0006-3495(99)77416-310.1016/S0006-3495(99)77416-310233078
  35. Yang L. Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta. 2008; 74(5): 1621-1629. dx.doi.org/10.1016/j.talanta.2007.10.01810.1016/j.talanta.2007.10.01818371827
  36. K'Owino IO, Sadik OA. Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis. 2005; 17(23): 2101-2113. dx.doi.org/10.1002/elan.20050337110.1002/elan.200503371
  37. Schwan HP. Electrical properties of tissues and cell suspensions: mechanisms and models. Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1994; 1: A70-A71. dx.doi.org/10.1109/IEMBS.1994.412155
  38. Martinsen ØG, Grimnes S, Schwan HP, Interface Phenomena and Dielectric Properties of Biological Tissue. Encyclopedia of Surface and Colloid Science. 2002. 2643-2653.
  39. Schwan HP, Electrical Properties of Tissue and Cell Suspensions. In Advances in Biological and Medical Physics, Lawrence, J.H., Tobias, C.A., Eds.; Acad. Press: New York. 1957; V: 147-209. dx.doi.org/10.1016/b978-1-4832-3111-2.50008-0
  40. Seo JK, Bera TK, Kwon H, Sadleir R. Effective admittivity of biological tissues as a coefficient of elliptic PDE. Computational and Mathematical Methods in Medicine. 2013; Article ID 353849, 10 pages. dx.doi.org/10.1155/2013/35384923710251
  41. Miklavcic D, Pavselj N, Hart FX. Electric Properties of Tissues, Wiley Encyclopedia of Biomedical Engineering, John Wiley & Sons, Inc. 2006. 1-12.
  42. Lewis Jr GK, Lewis Sr GK, Olbricht W. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers. Measurement Science and Technology. 2008; 19(10): 105102. dx.doi.org/10.1088/0957-0233/19/10/10510210.1088/0957-0233/19/10/105102
  43. Seoane F. Ferreira J, Sanchéz JJ, Bragós R. An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications. Physiological Measurement. 2008; 29(6): S267. dx.doi.org/10.1088/0967-3334/29/6/S231854482310.1088/0967-3334/29/6/S23
  44. Schröder J, Doerner S, Schneider T, Hauptmann P. Analogue and digital sensor interfaces for impedance spectroscopy. Measurement Science and Technology. 2004; 15(7): 1271. dx.doi.org/10.1088/0957-0233/15/7/00710.1088/0957-0233/15/7/007
  45. Zhao YQ, Demosthenous A, Bayford RH. A CMOS instrumentation amplifier for wideband bioimpedance spectroscopy systems. In Proceedings of the IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006, 4 pages.
  46. Masot R, Alca-iz M, Fuentes A, Schmidt FC, Barat JM, Gil L, Baigts D, Martinez-Ma-es R, Soto, J. Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical. 2010; 158(2): 217-223. dx.doi.org/10.1016/j.sna.2010.01.01010.1016/j.sna.2010.01.010
  47. Chintan M. Bhatt, Nagaraju J. Instrumentation to Estimate the Moisture Content in Bread Using Electrical Impedance Spectroscopy. Sensors & Transducers Journal. 2008; 97(10): 45-54.
  48. Chowdhury A, Nizamudheen VK, Bera TK, Ghoshal D, Chakraborty B. A study on the Impedance variation in Banana during Ripening using AD5933 based Impedance spectrometer with LabVIEW. Proceeding of the IEEE ICSSS-2016, India.
  49. Hoja J, Lentka G. Interface circuit for impedance sensors using two specialized single-chip microsystems. Sensors and Actuators A: Physical 2010; 163(1): 191-197. dx.doi.org/10.1016/j.sna.2010.08.00210.1016/j.sna.2010.08.002
  50. Margo C, Katrib J, Nadi M, Rouane A. A four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chip. Physiological Measurement. 2013; 34(4): 391. dx.doi.org/10.1088/0967-3334/34/4/3912348140610.1088/0967-3334/34/4/391
  51. Travis J, Kring J. LabVIEW for Everyone: Graphical Programming Made Easy and Fun, 3 Ed. PHI.
  52. Sugihara H, Oka H, Shimono K, Ogawa R, Taketani M.. U.S. Patent No. RE37,977. Washington, DC: U.S. Patent and Trademark Office. 2003.
  53. Maxwell JC. A Treatise on Electricity & Magnetism, vol. 1, London, Oxford Univ. Press. 1892, Chap. 10.
  54. Martinsen ØG, Grimnes S, Schwan HP. Biological Tissues: Interfacial and Dielectric Properties, Encyclopedia of Surface and Colloid Science, Volume 2, Ed Somasundaran, P. (2006). CRC press.
  55. Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance Characterization and Modeling of Electrodes for Biomedical Applications, IEEE Trans. Biomed. Eng. 2005; 52(7): 12951302. dx.doi.org/10.1109/TBME.2005.847523
  56. Tränkler HR, Kanoun O, Min M, Rist M. Smart sensor systems using impedance spectroscopy. Proc. Estonian Acad. Sci. Eng. 2007; 13(4): 455–478.
  57. Lasia A. Electrochemical Impedance Spectroscopy and Its Applications, Modern Aspects of Electrochemistry, B. E. Conway, J. Bockris, and R.E. White, Edts., Kluwer Academic/Plenum, Pub., NY, 1999, Vol. 32, p. 143-248.
  58. Schiffbauer J, Park S, Yossifon G. Electrical Impedance Spectroscopy of Microchannel-Nanochannel Interface Devices. Phys. Rev. Letters. 2013; 110: 204504. dx.doi.org/10.1103/PhysRevLett.110.20450410.1103/PhysRevLett.110.204504
  59. Song J, Bazant MZ. Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes. J. Electrochem. Soc. 2013; 160(1): A15-A24. dx.doi.org/10.1149/2.023301jes10.1149/2.023301jes
  60. Qiao G, Hong Y, Ou J, Guan X. Corrosion monitoring of the RC structures in time domain: Part II. Recognition algorithm based on fractional derivative theory. Measurement. 2015; 67: 84–91. dx.doi.org/10.1016/j.measurement.2014.12.04810.1016/j.measurement.2014.12.048
  61. Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Roberto Bueno P. Theoretical models for AC impedance of finite diffusion layers exhibiting low frequency dispersion. Journal of Electroanalytical Chemistry. 1999; 475: 152–163. dx.doi.org/10.1016/S0022-0728(99)00346-010.1016/S0022-0728(99)00346-0
  62. Wessels JGH (1996) Fungal hydrophobins: proteins that function at an interface. Trends in Plant Science. 1996; 1: 9-15. dx.doi.org/10.1016/S1360-1385(96)80017-3
  63. Mouritsen OG, Bloom M. Models of Lipid-Protein Interactions in Membranes. Annual Review of Biophysics and Biomolecular Structure. 1993; 22: 145-171. dx.doi.org/10.1146/annurev.bb.22.060193.00104510.1146/annurev.bb.22.060193.0010458347987
  64. Cole KS. Electric phase angle of cell membranes. J. Gen. Physiol. 1932; 15: 641-649. dx.doi.org/10.1085/jgp.15.6.64110.1085/jgp.15.6.641
  65. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, G!omez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C. Bioelectrical impedance analysis - part I: review of principles and methods. Clinical Nutrition. 2004; 23: 1226–1243. dx.doi.org/10.1016/j.clnu.2004.06.00410.1016/j.clnu.2004.06.004
  66. Damez JL, Clerjon S, Abouelkaram S, Lepetit J. Dielectric behavior of beef meat in the 1–1500 kHz range: Simulation with the Fricke/Cole–Cole model. Meat Science. 2007; 77: 512–519. dx.doi.org/10.1016/j.meatsci.2007.04.02810.1016/j.meatsci.2007.04.028
  67. Garcıa-Alonso MC, Saldana L, Alonso C, Barranco V, Munoz-Morris MA, Escudero ML. In situ cell culture monitoring on a Ti–6Al–4V surface by electrochemical techniques. Acta Biomaterialia. 2009; 5: 1374–1384. dx.doi.org/10.1016/j.actbio.2008.11.0201911908510.1016/j.actbio.2008.11.020
  68. Pliquett U, Altmann M, Pliquett F, Schoberlein L. Py – a parameter for meat quality. Meat Science. 2003; 65: 1429–37. dx.doi.org/10.1016/S0309-1740(03)00066-410.1016/S0309-1740(03)00066-4
  69. Fernández-Segovia I, Fuentes A, Ali-o M, Masot R, Alca-iz M, Barat JM. Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering. 2012; 113: 210–216. dx.doi.org/10.1016/j.jfoodeng.2012.06.00310.1016/j.jfoodeng.2012.06.003
  70. Valero A, Braschler T, Renaud P. A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy. Lab on a Chip. 2010;10(17): 2216-2225. dx.doi.org/10.1039/c003982a10.1039/c003982a20664865
  71. Wilson EB. The structure of protoplasm. Science. 1899; 10: 33–45. dx.doi.org/10.1126/science.10.237.3310.1126/science.10.237.3317829686
  72. Luby-Phelps K. The physical chemistry of cytoplasm and its influence on cell function: an update. Mol. Biol. Cell. 2013; 24(17): 2593-6. dx.doi.org/10.1091/mbc.E12-08-06172398972210.1091/mbc.e12-08-0617
  73. Zhang MIN, Stout DG, Willison JHM. Plant Tissue Impedance and Cold Acclimation: A Re-analysis. Journal of Experimental Botany. 1992; 43(247): 263-266. dx.doi.org/10.1093/jxb/43.2.263
  74. Zhang MIN, Willison JHM. Electrical Impedance Analysis in Plant Tissues: Impedance Measurement in Leaves. Journal of Experimental Botany 1993; 44(265): 1369-1375. dx.doi.org/10.1093/jxb/44.8.136910.1093/jxb/44.8.1369
  75. Buendia R, Gil-Pita R, Seoane F. Cole parameter estimation from the modulus of the electrical bioimpeadance for assessment of body composition. A full spectroscopy approach. J Electr. Bioimp. 2011; 2; 72-78. dx.doi.org/10.5617/joeb.197
  76. Fricke H, Morse S. The electric resistance and capacity of blood for frequencies between 800 and 4 ½ million cycles. J. General Physiol. 1925; 9(2): 153–167. dx.doi.org/10.1085/jgp.9.2.15310.1085/jgp.9.2.153
  77. Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. Journal of Chemical Physics. 1941; 9(4); 341-351. dx.doi.org/10.1063/1.175090610.1063/1.1750906
  78. Kuang W, Nelson SO. Low-Frequency Dielectric Properties of Biological Tissues: A Review with Some New Insights. Transactions of the ASAE. 1998; 41(1); 173. dx.doi.org/10.13031/2013.1714210.13031/2013.17142
  79. Gabriel C, Gabriel S, Courhout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996; 41(11): 2231-2249. dx.doi.org/10.1088/0031-9155/41/11/00110.1088/0031-9155/41/11/001
  80. Powles JG. Cole-Cole plots as they should be. Journal of Molecular Liquids. 1993; 56: 35-47. dx.doi.org/10.1016/0167-7322(93)80017-P10.1016/0167-7322(93)80017-P
  81. Bera TK, Nagaraju J, Lubineau G. Electrical Impedance Spectroscopy (EIS) Based Evaluation of Biological Tissues Phantoms to Study the Multifrequency Electrical Impedance Tomography (Mf-EIT) Systems. Journal of Visualization. 2016; 19(4): 691–713. dx.doi.org/10.1007/s12650-016-0351-010.1007/s12650-016-0351-0
  82. Han L, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters. 2004; 84(13): 2433-2435. dx.doi.org/10.1063/1.169049510.1063/1.1690495
  83. Kun S, Ristic B, Peura RA, Dunn RM. Real-time extraction of tissue impedance model parameters for electrical impedance spectrometer. Medical & Biological Engineering & Computing. 1999; 37(4): 428-432. dx.doi.org/10.1007/BF0251332510.1007/BF0251332510696697
  84. Mellert F, Winkler K, Schneider C, Dudykevych T, Welz A, Osypka M, Gersing E, Preusse CJ. Detection of (Reversible) Myocardial Ischemic Injury by Means of Electrical Bioimpedance, IEEE Trans. Biomed. Eng. 2011; 58(6): 1511-1518. dx.doi.org/10.1109/TBME.2010.2054090
  85. Casas O, Bragos R, Riu PJ, Rosell J, Tresanchez M, Warren M, Rodriguez-Sinovas A, Carre-o A, Cinca J. In vivo and in situ ischemic tissue characterization using electrical impedance spectroscopy. Annals of the New York Academy of Sciences. 1999; 873(1): 51-58. dx.doi.org/10.1111/j.1749-6632.1999.tb09448.x10.1111/j.1749-6632.1999.tb09448.x10372149
  86. Rigaud B, Hamzaoui L, Frikha MR, Chauveau N, Morucci JP. In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range. Physiological Measurement. 1995; 16(3A): A15. dx.doi.org/10.1088/0967-3334/16/3A/00210.1088/0967-3334/16/3A/002
  87. Han A, Yang L, Frazier AB. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clinical Cancer Research. 2007; 3(1): 139-143. dx.doi.org/10.1158/1078-0432.CCR-06-1346
  88. Instruction Manual, 7600 Precision LCR Meter, Model B, QuadTech, Inc., 5 Clock Tower Place, 210 East Maynard, Massachusetts, U.S.A. 01754-2530, October, 2002.
  89. Chang Z, Pop GAM, Meijer GCM. A Comparison of Two-and Four-Electrode Techniques to Characterize Blood Impedance for the Frequency Range of 100 Hz to 100 MHz, IEEE Trans. Biomed. Eng. 2008; 55(3): 1247-1249. dx.doi.org/10.1109/TBME.2008.915725
  90. Bera TK, Mohamadou Y, Lee KH, Wi H, Oh TI, Eung EJ, Soleimani M, Seo JK. Electrical Impedance Spectroscopy for Electro-mechanical Characterization of Conductive Fabrics. Sensors. 2014; 14: 9738-9754. dx.doi.org/10.3390/s14060973810.3390/s14060973824892493
  91. Yúfera A, Rueda A. A Method for Bioimpedance Measure With Four- and Two-Electrode Sensor Systems, 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, August 20-24, 2008, pp 2318-2321. dx.doi.org/10.1109/iembs.2008.4649662
  92. Bera TK and Nagaraju J. A MATLAB-Based Boundary Data Simulator for Studying the Resistivity Reconstruction Using Neighbouring Current Pattern. Journal of Medical Engineering. 2013; Article ID 193578; 15 pages. dx.doi.org/10.1155/2013/19357827006909
  93. Clemente F, Romano M, Bifulco P, Cesarelli M. EIS measurements for characterization of muscular tissue by means of equivalent electrical parameter. Measurement. 2014; 58: 476-482. dx.doi.org/10.1016/j.measurement.2014.09.01310.1016/j.measurement.2014.09.013
  94. Clemente F, Arpaia P, Manna C. Characterization of human skin impedance after electrical treatment for transdermal drug delivery. Measurement. 2013; 46(9): 3494-3501. dx.doi.org/10.1016/j.measurement.2013.06.03310.1016/j.measurement.2013.06.033
  95. Mishra V, Bouyad H, Halter RJ. Electrical impedance-based biopsy for prostate cancer detection. In Bioengineering Conference (NEBEC), 2011 IEEE 37th Annual Northeast pp. 1-2, IEEE. dx.doi.org/10.1109/nebc.2011.5778712
  96. Chao PJ, Huang EY, Cheng KS, Huang YJ. Electrical impedance spectroscopy as electrical biopsy for monitoring radiation sequelae of intestine in rats. BioMed Research International. 2013; Article ID 974614, 7 pages. dx.doi.org/10.1155/2013/97461424093111
  97. Keshtkar, A., Salehnia, Z., Keshtkar, A., & Shokouhi, B. Bladder cancer detection using electrical impedance technique (tabriz mark 1). Pathology research international, 2012; Article ID 470101, 5 pages. dx.doi.org/10.1155/2012/47010122567538
  98. Hope TA, Iles SE. Technology review: the use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Research. 2004; 6(2): 69-74. dx.doi.org/10.1186/bcr744
  99. Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances. 2008; 26(2): 135-150. dx.doi.org/10.1016/j.biotechadv.2007.10.0031815587010.1016/j.biotechadv.2007.10.003
  100. Yang L, Li Y, Griffis CL, Johnson MG. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors and Bioelectronics. 2004; 19(10): 1139-1147. dx.doi.org/10.1016/j.bios.2003.10.00910.1016/j.bios.2003.10.009
  101. Cai D, Ren L, Zhao H, et al. A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nature Nanotechnology. 2010; 5(8): 597-601. dx.doi.org/10.1038/nnano.2010.1142058183510.1038/nnano.2010.114
  102. Pan S, Rothberg L. Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy. Langmuir. 2005; 21(3): 1022-1027. dx.doi.org/10.1021/la048083a1566718410.1021/la048083a
  103. Ollmar S, Emtestam L. Electrical impedance applied to non‐invasive detection of irritation in skin. Contact Dermatitis. 1992; 27(1): 37-42. dx.doi.org/10.1111/j.1600-0536.1992.tb05195.x10.1111/j.1600-0536.1992.tb05195.x1424589
  104. Longbottom C, Huysmans MCD, Pitts NB, Los P, Bruce PG. Detection of dental decay and its extent using AC impedance spectroscopy. Nature Medicine. 1996; 2(2), 235-237. dx.doi.org/10.1038/nm0296-23510.1038/nm0296-235
  105. Tidy JA, Brown BH, Healey TJ, Daayana S, Martin M, Prendiville W, Kitchener HC. Accuracy of detection of high‐grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy. International Journal of Obstetrics & Gynaecology. 2013; 120(4): 400-411. dx.doi.org/10.1111/1471-0528.1209610.1111/1471-0528.12096
  106. Keshtkar A, Keshtkar A, Smallwood RH. Electrical impedance spectroscopy and the diagnosis of bladder pathology. Physiological Measurement. 2006; 27(7): 585. dx.doi.org/10.1088/0967-3334/27/7/00310.1088/0967-3334/27/7/003
DOI: https://doi.org/10.5617/jeb.2978 | Journal eISSN: 1891-5469
Language: English
Page range: 35 - 54
Submitted on: Jun 14, 2016
Published on: Dec 4, 2016
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Tushar Kanti Bera, Nagaraju Jampana, Gilles Lubineau, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.