Have a personal or library account? Click to login
Modeling and Simulation of Equivalent Circuits in Description of Biological Systems - A Fractional Calculus Approach Cover

Modeling and Simulation of Equivalent Circuits in Description of Biological Systems - A Fractional Calculus Approach

By: F. Gómez,  J. Bernal,  J. Rosales and  T. Cordova  
Open Access
|Jul 2012

References

  1. Rigaud B., Hamzaoui L., Chauveau N., Granie M., Scotto Di Rinaldi JP, and Morucci JP. Tissue characterization by impedance: a multifrequency approach. Physiol. Meas. 1994; 15: A13-A20. http://dx.doi.org/10.1088/0967-3334/15/2A/002808703510.1088/0967-3334/15/2A/002
  2. Edelberg R. Biophysical Properties of the Skin, Elden HR, Editor. John Wiley & Sons, New York. 1971; 513-550.
  3. Cole KS. Cold Spring Harbor Symp. Quant. Biol. 1933;1: 107. http://dx.doi.org/10.1101/SQB.1933.001.01.014
  4. Hozawa S. Arch. Phys. 1928;219:111.
  5. Plutchik R., and Hirsch HR. Skin Impedance and Phase Angle as a Function of Frequency and Current. Science, 1963;141:919-927. http://dx.doi.org/10.1126/science.141.3584.927
  6. Stephens WGS. Med. Electron. Biol. Eng. 1963;1:384-389. http://dx.doi.org/10.1007/BF02474422
  7. Burton CE, David RM, Portnoy WM, and Akers LA. The application of Bode analysis to skin impedance. Psychophysiology. 1974;11(4):517-25. http://dx.doi.org/10.1111/j.1469-8986.1974.tb00581.x485465510.1111/j.1469-8986.1974.tb00581.x
  8. Van Valkenburg ME. Network Analysis, 3rd ed. Prentice-Hall, Englewood Cliffs, N.J, 1974.
  9. Sosa M., Bernal-Alvarado J.. Magnetic field influence on electrical properties of human blood measured by impedance spectroscopy. Bioelectromagnetics. 2005;26(7):564–570. http://dx.doi.org/10.1002/bem.201321614278010.1002/bem.20132
  10. Fredix HM., Saris HM., Soeters PB., Wouters FM., and Kester DM. Estimation of body composition by bioelectrical impedance in cancer patients. European Journal of Clinical Nutrition. McMillan Press. 2009;44:749-752.
  11. Hernández F., Salazar CA., Bernal J. Determinación de las propiedades eléctricas en tejido sanguíneo. Ciencia UANL. 2007:510-515.
  12. Dorf RC and Svoboda JA. Circuitos eléctricos, 6 ed. Alfaomega, 2000.
  13. Cole KS. Permeability and impermeability of cell membranes for ions. Cold Spring Harbor Symp. Quant. Biol. 1940;8:110-122. http://dx.doi.org/10.1101/SQB.1940.008.01.01310.1101/SQB.1940.008.01.013
  14. Debye P. Polar Molecules. New York: Dover, 1945.
  15. Casona Román M., Paul Torres S., and Casanova Bellido M. Bases físicas del análisis de la impedancia bioeléctrica. Vox pediátrica, 1999;7:139-143.
  16. Wyss WJ. Math. Phys. 1986;27:2782. http://dx.doi.org/10.1063/1.52725110.1063/1.527251
  17. Hilfer RJ. Phys. Chem. B. 2000;104:3851. http://dx.doi.org/10.1021/jp993432910.1021/jp9934329
  18. Metzler R and Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach J. Phys. 2000;1:339.
  19. Samko SG., Kilbas AA., and Marichev OI. Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science Publishers, Langhorne, PA, 1993.
  20. Agrawal OP, Tenreiro-Machado JA., and Sabatier I. (Eds), Fractional Derivatives and Their Applications: Nonlinear Dynamics; 38, Springer-Verlag, Berlin 2004.
  21. Hilfer RJ. (Ed.) Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
  22. West BJ., Bologna M., and Grigolini P. Physics of Fractional Operators, Springer-Verlag, Berlin 2003. http://dx.doi.org/10.1007/978-0-387-21746-8
  23. Magin RL. Fractional calculus in Bioengineering, Begell House Publisher, Rodding 2006.
  24. Ionescu CM and De Keyser R. Relations between Fractional-Order Model Parameters and Lung Pathology in Chronic Obstructive Pulmonary Disease. IEEE Trans. Biomed. Eng. 2009;56(4):978-987. http://dx.doi.org/10.1109/TBME.2008.20049661927293710.1109/TBME.2008.2004966
  25. Ionescu CM, Muntean I, and Tenreiro-Machado JA, De Keyser R, and Abrudean M. A Theoretical Study on Modeling the Respiratory Tract with Ladder Networks by Means of Intrinsic Fractal Geometry. IEEE Trans. Biomed. Eng. 2010;57(2):246-253. http://dx.doi.org/10.1109/TBME.2009.203049610.1109/TBME.2009.203049619709953
  26. Ionescu CM., Tenreiro Machado JA., and De Keyser R. Modeling of the Lung Impedance Using a Fractional-Order Ladder Network with Constant Phase Elements. IEEE Trans. Biomed. Circuits Syst. 2011;5(1):83-89. http://dx.doi.org/10.1109/TBCAS.2010.207763610.1109/TBCAS.2010.207763623850980
  27. Caputo M and Mainardi F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics. 1971;91:134-147. http://dx.doi.org/10.1007/BF0087956210.1007/BF00879562
  28. Westerlund S. Causality. Report No. 940426. University of Kalmar, 1994.
  29. Mandelbrot B. The Fractal Geometry of Nature. Earth Surface Processes and Landforms. 1983;8(4):406-418.
  30. Oldham KK and Spanier J. The fractional Calculus. Academic Press, New York, 1974.
  31. Miller KS and Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Willey and Sons, New York, 1993.
  32. Baleanu D, Äunvenc ZBG., and Tenreiro Machado JA. New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010. http://dx.doi.org/10.1007/978-90-481-3293-5
  33. Podlubny I. Fractional Differential Equations. Academic Press, New York, 1999.
  34. Diethelm K, Ford NJ, Freed AD, and Luchko Y. Algorithms for the Fractional Calculus: A selection of Numerical Methods, Comput. Methods Appl. Mech. Eng. 2005;194:743:773.
  35. Proakis JG and Manolakis DG. Digital signal processing, in Principles, Algorithms and Applications, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.
  36. Ramirez A, Gómez P, Moreno P, and Gutierrez A. Frequency domain analysis of electromagnetic transients through the numerical Laplace transform. Presented at the IEEE General Meeting, Denver, CO, 2004.
  37. Wilcox DJ and Gibson IS. Numerical Laplace transformation and inversion in the analysis of physical systems. Int. J. Numer. Methods Eng. 1984;20:1507–1519. http://dx.doi.org/10.1002/nme.162020081210.1002/nme.1620200812
  38. Moreno P and Ramirez A. Implementation of the numerical Laplace transform: a Review, IEEE Trans. Power Delivery. 2008;23(4):2599-2609. http://dx.doi.org/10.1109/TPWRD.2008.923404
  39. Sheng H, Li Y, and Chen YQ. Application of numerical inverse Laplace transform algorithms in fractional calculus, J. Franklin Inst. 2011;348(2):315-330. http://dx.doi.org/10.1016/j.jfranklin.2010.11.00910.1016/j.jfranklin.2010.11.009
  40. Gómez JF, Rosales JJ, Bernal JJ, and Cordova T. Application of the Numerical Laplace Transform on the Simulation of Fractional Differential Equations. Prespacetime Journal. 2012;3(6):505-523.
  41. Qing-Li Y, Chen P, Haimovitz-Friedman A, Reilly RM, and Shun Wong C. Endothelial Apoptosis Initiates Acute Blood–Brain Barrier Disruption after Ionizing Radiation. Cancer Research. 2003;63:5950–5956. PMid:1452292114522921
  42. Gabriely S, Lau RW, and Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996;41:2271–2293. http://dx.doi.org/10.1088/0031-9155/41/11/003
  43. Gómez JF, Rosales JJ, Bernal JJ, Tkach VI, Guía M., Sosa M, and Córdova T. RC Circuit of Non-integer Order. Symposium on Fractional Signals and Systems. 2011;14(4):61-67.
  44. Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. App. Anal. 2002;5(4):367-386.
  45. Moshre-Torbati M, and Hammond JK. Physical and geometrical interpretation of fractional operators. J. Franklin Inst. 1998;335B(6):1077-1086. http://dx.doi.org/10.1016/S0016-0032(97)00048-3
DOI: https://doi.org/10.5617/jeb.225 | Journal eISSN: 1891-5469
Language: English
Page range: 2 - 11
Submitted on: Dec 12, 2011
Published on: Jul 27, 2012
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2012 F. Gómez, J. Bernal, J. Rosales, T. Cordova, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.