References
- Rigaud B., Hamzaoui L., Chauveau N., Granie M., Scotto Di Rinaldi JP, and Morucci JP. Tissue characterization by impedance: a multifrequency approach. Physiol. Meas. 1994; 15: A13-A20. http://dx.doi.org/10.1088/0967-3334/15/2A/002808703510.1088/0967-3334/15/2A/002
- Edelberg R. Biophysical Properties of the Skin, Elden HR, Editor. John Wiley & Sons, New York. 1971; 513-550.
- Cole KS. Cold Spring Harbor Symp. Quant. Biol. 1933;1: 107. http://dx.doi.org/10.1101/SQB.1933.001.01.014
- Hozawa S. Arch. Phys. 1928;219:111.
- Plutchik R., and Hirsch HR. Skin Impedance and Phase Angle as a Function of Frequency and Current. Science, 1963;141:919-927. http://dx.doi.org/10.1126/science.141.3584.927
- Stephens WGS. Med. Electron. Biol. Eng. 1963;1:384-389. http://dx.doi.org/10.1007/BF02474422
- Burton CE, David RM, Portnoy WM, and Akers LA. The application of Bode analysis to skin impedance. Psychophysiology. 1974;11(4):517-25. http://dx.doi.org/10.1111/j.1469-8986.1974.tb00581.x485465510.1111/j.1469-8986.1974.tb00581.x
- Van Valkenburg ME. Network Analysis, 3rd ed. Prentice-Hall, Englewood Cliffs, N.J, 1974.
- Sosa M., Bernal-Alvarado J.. Magnetic field influence on electrical properties of human blood measured by impedance spectroscopy. Bioelectromagnetics. 2005;26(7):564–570. http://dx.doi.org/10.1002/bem.201321614278010.1002/bem.20132
- Fredix HM., Saris HM., Soeters PB., Wouters FM., and Kester DM. Estimation of body composition by bioelectrical impedance in cancer patients. European Journal of Clinical Nutrition. McMillan Press. 2009;44:749-752.
- Hernández F., Salazar CA., Bernal J. Determinación de las propiedades eléctricas en tejido sanguíneo. Ciencia UANL. 2007:510-515.
- Dorf RC and Svoboda JA. Circuitos eléctricos, 6 ed. Alfaomega, 2000.
- Cole KS. Permeability and impermeability of cell membranes for ions. Cold Spring Harbor Symp. Quant. Biol. 1940;8:110-122. http://dx.doi.org/10.1101/SQB.1940.008.01.01310.1101/SQB.1940.008.01.013
- Debye P. Polar Molecules. New York: Dover, 1945.
- Casona Román M., Paul Torres S., and Casanova Bellido M. Bases físicas del análisis de la impedancia bioeléctrica. Vox pediátrica, 1999;7:139-143.
- Wyss WJ. Math. Phys. 1986;27:2782. http://dx.doi.org/10.1063/1.52725110.1063/1.527251
- Hilfer RJ. Phys. Chem. B. 2000;104:3851. http://dx.doi.org/10.1021/jp993432910.1021/jp9934329
- Metzler R and Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach J. Phys. 2000;1:339.
- Samko SG., Kilbas AA., and Marichev OI. Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science Publishers, Langhorne, PA, 1993.
- Agrawal OP, Tenreiro-Machado JA., and Sabatier I. (Eds), Fractional Derivatives and Their Applications: Nonlinear Dynamics; 38, Springer-Verlag, Berlin 2004.
- Hilfer RJ. (Ed.) Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
- West BJ., Bologna M., and Grigolini P. Physics of Fractional Operators, Springer-Verlag, Berlin 2003. http://dx.doi.org/10.1007/978-0-387-21746-8
- Magin RL. Fractional calculus in Bioengineering, Begell House Publisher, Rodding 2006.
- Ionescu CM and De Keyser R. Relations between Fractional-Order Model Parameters and Lung Pathology in Chronic Obstructive Pulmonary Disease. IEEE Trans. Biomed. Eng. 2009;56(4):978-987. http://dx.doi.org/10.1109/TBME.2008.20049661927293710.1109/TBME.2008.2004966
- Ionescu CM, Muntean I, and Tenreiro-Machado JA, De Keyser R, and Abrudean M. A Theoretical Study on Modeling the Respiratory Tract with Ladder Networks by Means of Intrinsic Fractal Geometry. IEEE Trans. Biomed. Eng. 2010;57(2):246-253. http://dx.doi.org/10.1109/TBME.2009.203049610.1109/TBME.2009.203049619709953
- Ionescu CM., Tenreiro Machado JA., and De Keyser R. Modeling of the Lung Impedance Using a Fractional-Order Ladder Network with Constant Phase Elements. IEEE Trans. Biomed. Circuits Syst. 2011;5(1):83-89. http://dx.doi.org/10.1109/TBCAS.2010.207763610.1109/TBCAS.2010.207763623850980
- Caputo M and Mainardi F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics. 1971;91:134-147. http://dx.doi.org/10.1007/BF0087956210.1007/BF00879562
- Westerlund S. Causality. Report No. 940426. University of Kalmar, 1994.
- Mandelbrot B. The Fractal Geometry of Nature. Earth Surface Processes and Landforms. 1983;8(4):406-418.
- Oldham KK and Spanier J. The fractional Calculus. Academic Press, New York, 1974.
- Miller KS and Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Willey and Sons, New York, 1993.
- Baleanu D, Äunvenc ZBG., and Tenreiro Machado JA. New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010. http://dx.doi.org/10.1007/978-90-481-3293-5
- Podlubny I. Fractional Differential Equations. Academic Press, New York, 1999.
- Diethelm K, Ford NJ, Freed AD, and Luchko Y. Algorithms for the Fractional Calculus: A selection of Numerical Methods, Comput. Methods Appl. Mech. Eng. 2005;194:743:773.
- Proakis JG and Manolakis DG. Digital signal processing, in Principles, Algorithms and Applications, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.
- Ramirez A, Gómez P, Moreno P, and Gutierrez A. Frequency domain analysis of electromagnetic transients through the numerical Laplace transform. Presented at the IEEE General Meeting, Denver, CO, 2004.
- Wilcox DJ and Gibson IS. Numerical Laplace transformation and inversion in the analysis of physical systems. Int. J. Numer. Methods Eng. 1984;20:1507–1519. http://dx.doi.org/10.1002/nme.162020081210.1002/nme.1620200812
- Moreno P and Ramirez A. Implementation of the numerical Laplace transform: a Review, IEEE Trans. Power Delivery. 2008;23(4):2599-2609. http://dx.doi.org/10.1109/TPWRD.2008.923404
- Sheng H, Li Y, and Chen YQ. Application of numerical inverse Laplace transform algorithms in fractional calculus, J. Franklin Inst. 2011;348(2):315-330. http://dx.doi.org/10.1016/j.jfranklin.2010.11.00910.1016/j.jfranklin.2010.11.009
- Gómez JF, Rosales JJ, Bernal JJ, and Cordova T. Application of the Numerical Laplace Transform on the Simulation of Fractional Differential Equations. Prespacetime Journal. 2012;3(6):505-523.
- Qing-Li Y, Chen P, Haimovitz-Friedman A, Reilly RM, and Shun Wong C. Endothelial Apoptosis Initiates Acute Blood–Brain Barrier Disruption after Ionizing Radiation. Cancer Research. 2003;63:5950–5956. PMid:1452292114522921
- Gabriely S, Lau RW, and Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996;41:2271–2293. http://dx.doi.org/10.1088/0031-9155/41/11/003
- Gómez JF, Rosales JJ, Bernal JJ, Tkach VI, Guía M., Sosa M, and Córdova T. RC Circuit of Non-integer Order. Symposium on Fractional Signals and Systems. 2011;14(4):61-67.
- Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. App. Anal. 2002;5(4):367-386.
- Moshre-Torbati M, and Hammond JK. Physical and geometrical interpretation of fractional operators. J. Franklin Inst. 1998;335B(6):1077-1086. http://dx.doi.org/10.1016/S0016-0032(97)00048-3