Have a personal or library account? Click to login
Improving Image Quality in Electrical Impedance Tomography (EIT) Using Projection Error Propagation-Based Regularization (PEPR) Technique: A Simulation Study Cover

Improving Image Quality in Electrical Impedance Tomography (EIT) Using Projection Error Propagation-Based Regularization (PEPR) Technique: A Simulation Study

Open Access
|Mar 2011

References

  1. Webster J. G. Electrical impedance tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York, USA 1990.
  2. Denyer C. W. L. Electronics for Real-Time and Three-Dimensional Electrical Impedance Tomographs, PhD Thesis, Oxford Brookes University, January 1996.
  3. Metherall P. Three Dimensional Electrical Impedance Tomography of the Human Thorax, PhD Thesis, University of Sheffield. Jan’1998.
  4. Huang C. N., Yu F. M. and Chung H. Y. The Scanning Data Collection Strategy for Enhancing the Quality of Electrical Impedance Tomography. IEEE Trans. Instrument. Meas. 2008;57(6):1193-1198. 10.1109/TIM.2007.91514910.1109/TIM.2007.915149
  5. Bushberg J. T., Seibert J. A., Leidholdt Jr. E. M., Boone J. M. The Essential Physics of Medical Imaging, 2nd Edition, Lippincott Williams & Wilkins, ISBN-10: 0683301187. 2001.
  6. Li Y., Rao L., He R., Xu G., Wu Q., Yan W., Dong G. and Yang Q. A Novel Combination Method of Electrical Impedance Tomography Inverse Problem for Brain Imaging. IEEE Trans. Magnetics. 2005;41(5):1848-1851. 10.1109/TMAG.2005.84650610.1109/TMAG.2005.846506
  7. Brown B. H. Medical impedance tomography and process impedance tomography: a brief review. Measurement Science & Technology. 2001;12:991-996. 10.1088/0957-0233/12/8/30110.1088/0957-0233/12/8/301
  8. Linderholm P., Marescot L., Loke M. H. and Renaud P. Cell Culture Imaging Using Microimpedance Tomography. IEEE Trans. on Biomed. Eng. 2008;55(1):138-146. 10.1109/TBME.2007.91064910.1109/TBME.2007.910649
  9. Martinsen Ø. G., Kalvøy H., Grimnes S., Nordbotten B., Hol P. K., Fosse E., Myklebust H. and Becker L. B. Invasive Electrical Impedance Tomography for Blood Vessel Detection. The Open Biomed. Eng. J. 2010;4:135-137. 10.2174/187412070100401013510.2174/1874120701004010135
  10. Borsic A., Halter R., Wan Y., Hartov A. and Paulsen K. D. Electrical impedance tomography reconstruction for three-dimensional imaging of the prostate. Physiol. Meas. 2010;31:S1–S16. 10.1088/0967-3334/31/8/S012064761910.1088/0967-3334/31/8/S01
  11. Bagshaw A. P., Liston A. D., Bayford R. H., Tizzard A., Gibson A. P., Tidswell A. T., Sparkes M. K., Dehghani H., Binnie C. D. and Holder D. S. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 2003;20:752–764. 10.1016/S1053-8119(03)00301-X1456844910.1016/S1053-8119(03)00301-X
  12. Murphy D., Burton P., Coombs R., Tarassenko L. and Rolfe P. Impedance Imaging in the Newborn. Clin. Phys. Physiol. Meas. 1987;8(Suppl. A):131-40. 10.1088/0143-0815/8/4A/01710.1088/0143-0815/8/4A/0173568562
  13. Tyna H. A. and Iles S. E. Technology review: The use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Research. 2004;6(2):69-74.
  14. Moura F. S., Aya J. C. C., Fleury A. T., Amato M. B. P., and Lima R. G. Dynamic Imaging in Electrical Impedance Tomography of the Human Chest With Online Transition Matrix Identification. IEEE Trans. Biomed. Eng. 2010;57(2):422-431. 10.1109/TBME.2009.203252910.1109/TBME.2009.203252919789101
  15. Ferraioli F., Formisano A., and Martone R. Effective Exploitation of Prior Information in Electrical Impedance Tomography for Thermal Monitoring of Hyperthermia Treatments. IEEE Trans. Magnetics. 2009;45(3):1554-1557. 10.1109/TMAG.2009.201274010.1109/TMAG.2009.2012740
  16. McArdle F. J., Suggett A. J., Brown B. H., and Barber D. C. An assessment of dynamic images by applied potential tomography for monitoring pulmonary perfusion. Clin. Phys. Physiol. Meas. 1988;9(Suppl. A):87-91. 10.1088/0143-0815/9/4A/015324065610.1088/0143-0815/9/4A/015
  17. Hoetink A. E., Faes T. J. C., Marcus J. T., Kerkkamp H. J. J. and Heethaar R. M. Imaging of Thoracic Blood Volume Changes During the Heart Cycle With Electrical Impedance Using a Linear Spot-Electrode Array. IEEE Tran. on Med. Imaging. 2002;21(6):653-661. 10.1109/TMI.2002.80058210.1109/TMI.2002.800582
  18. Ferrer A. R. Z., Castro G. M., Gaona G. A., Aguillon M.A., Rosell F. P. J. and Carrera B. J. Electrical Impedance Tomography: An Electronic Design, with Adaptive Voltage Measurements and A Phantom Circuit for Research in The Epilepsy Field, Proceedings - 19th Internl Conf. - IEEE/EMBS Oct. 30 - Nov. 2, 1997, pp 867-868, USA.
  19. Henderson R. P., Webster J. G. An impedance camera for spatially specific measurements of the thorax. IEEE Transactions on Biomedical Engineering. 1978;Bme-25(3):250-254. 10.1109/TBME.1978.32632910.1109/TBME.1978.326329
  20. Hou W. D., and Mo Y. L. Increasing image resolution in electrical impedance tomography. Electronics Letters. 2002;38:701-702. 10.1049/el:2002047710.1049/el:20020477
  21. Lionheart W. R. B. EIT reconstruction algorithms: pitfalls, Review Article, challenges. Physiol. Meas. 2004;25:125–142. 10.1088/0967-3334/25/1/02110.1088/0967-3334/25/1/02115005311
  22. Wei. D. H. and Yu-Long M. New Regularization Method in Electrical Impedance Tomography. Journal of Shanghai University (English Edition) . 2002;6(3):211–215. 10.1007/s11741-002-0036-x10.1007/s11741-002-0036-x
  23. Vauhkonen M., Vadasz D., Karjalainen P. A., Somersalo E., and Kaipio J. P. Tikhonov Regularization and Prior Information in Electrical Impedance Tomography. IEEE Transactions on Medical Imaging. 1998;17(2):285-293. 10.1109/42.70074010.1109/42.7007409688160
  24. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen. Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography. Med. Phys. 2000;27:2693-2700. 10.1118/1.13239841119095210.1118/1.1323984
  25. Niu H., Guo P., Ji L., Zhao Q. and Jiang T. Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method. Optics Express. 2008;16(17):12423. 10.1364/OE.16.0124231871147910.1364/OE.16.012423
  26. Polydorides N. and Lionheart W. R. B. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project. Meas. Sci. Technol. 2002;13:1871–1883. 10.1088/0957-0233/13/12/31010.1088/0957-0233/13/12/310
  27. Vauhkonen M., Lionheart W. R. B., L. M. Heikkinen, P. J. Vauhkonen, J. P. Kaipio. A Matlab package for the EIDORS project to reconstruct two dimensional EIT images. Physiol. Meas. 2001;22:107–111. 10.1088/0967-3334/22/1/31410.1088/0967-3334/22/1/31411236871
  28. Bera T. K. and Nagaraju J. A Stainless Steel Electrode Phantom to Study the Forward Problem of Electrical Impedance Tomography (EIT). Sensors & Transducers Journal. 2009;104(5):33-40.
  29. Bera T. K. and Nagaraju J. A Reconfigurable Practical Phantom for Studying the 2 D Electrical Impedance Tomography (EIT) Using a FEM Based Forward Solver, 10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009), School of Mathematics, The University of Manchester, UK, 16th-19th June 2009.
  30. Bera T. K. and Nagaraju J. A Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT), Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, 5th - 7th May 2009, pp 511-516.
  31. Bera T. K. and Nagaraju J. Studying the Boundary Data Profile of A Practical Phantom for Medical Electrical Impedance Tomography with Different Electrode Geometries, Proceedings of The World Congress on Medical Physics and Biomedical Engineering-2009 Sept 7–12, 2009, Munich, Germany, IFMBE Proceedings 25/II, pp. 925–929.
  32. Malmivuo J. and Plonsey R. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, Chapter-26, Sec.-26.2.1, New York, Oxford University Press, 1995.
  33. Bera T. K. and Nagaraju J. A Simple Instrumentation Calibration Technique for Electrical Impedance Tomography (EIT) Using A 16 Electrode Phantom, Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), Bangalore, August 22 to 25, pp. 347-352.
  34. Brown B. H., Barber D. C., A. D. Seagar. Applied potential tomography: possible clinical applications. Clin. Phys. Physiol. Meas. 1985;6:109-121. 10.1088/0143-0815/6/2/00210.1088/0143-0815/6/2/0024017442
  35. Graham B. M. Enhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung Imaging, PhD thesis, University of Ottawa, April 2007.
  36. Yorkey T. J. Comparing reconstruction methods for electrical impedance tomography, PhD thesis, University of. Wisconsin at Madison, Madison, WI 53706, 1986.
  37. Reddy J. N. An Introduction to the Finite Element Method, 3rd Ed., 2nd Reprint, TATA McGraw-Hill Pub. Co. Ltd, 2006.
  38. Biswas S. K., Rajan K., Vasu R. M. Interior photon absorption based adaptive regularization improves diffuse optical tomography, Proc. SPIE, Volume 7546, 754611 (2010). 10.1117/12.853421
  39. Grootveld C. J. Measuring and Modeling of Concentrated Settling Suspensions Using Electrical Impedance Tomography, PhD Thesis, Delft University of Technology, The Netherlands, 1996.
  40. Arridge S. R. Optical tomography in medical imaging, Topical Review. Inverse Problems. 1999;15:R41–R93. 10.1088/0266-5611/15/2/02210.1088/0266-5611/15/2/022
  41. Soleimani M., Yalavarthy P. K. and Dehghani H. Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography. IEEE Trans. Instrum. Meas. 2010;59(1):78-83. 10.1109/TIM.2009.202164510.1109/TIM.2009.2021645
  42. M. Soleimani and W. R. B. Lionheart. Nonlinear image reconstruction in electrical capacitance tomography using experimental data. Meas. Sci. Technol., 2005;16(10):1987– 1996. 10.1088/0957-0233/16/10/014
  43. Chan T. F. and Tai X. C. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 2004;193(1):40– 66. 10.1016/j.jcp.2003.08.003
  44. Bera T. K. and Nagaraju J. Resistivity Imaging of A Reconfigurable Phantom With Circular Inhomogeneities in 2D-Electrical Impedance Tomography. Measurement. 2011;44(3):518-526. 10.1016/j.measurement.2010.11.01510.1016/j.measurement.2010.11.015
  45. Song X., Pogue B. W., Jiang S., Doyley M. M., Dehghani H., Tosteson T. D., and Paulsen K. D. Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl. Opt. 2004;43:1053-1062. 10.1364/AO.43.0010531500848410.1364/AO.43.001053
  46. Kanmani B. and Vasu R. M. Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations. Phys. Med. Biol. 2005;50:247–264. 10.1088/0031-9155/50/2/0051574294210.1088/0031-9155/50/2/005
  47. Reyes M., Malandain G., Koulibaly P. M., González-Ballester M. A. and Darcourt J. Model-based respiratory motion compensation for emission tomography image reconstruction. Phys. Med. Biol. 2007;52:3579–3600. 10.1088/0031-9155/52/12/0161766456110.1088/0031-9155/52/12/016
DOI: https://doi.org/10.5617/jeb.158 | Journal eISSN: 1891-5469
Language: English
Page range: 2 - 12
Submitted on: Jan 31, 2011
Published on: Mar 13, 2011
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2011 Tushar Kanti Bera, Samir Kumar Biswas, K. Rajan, J. Nagaraju, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.