Have a personal or library account? Click to login
Transferrin and Lactoferrin – Human Iron Sources for Enterococci Cover

Transferrin and Lactoferrin – Human Iron Sources for Enterococci

By: PAWEŁ LISIECKI  
Open Access
|Dec 2017

References

  1. Brock J.H. and J. Ng. 1983. The effect of desferrixamine on growth of Staphylococcus aureus, Yersinia enterocolitica and Streptococcus faecalis in human serum: uptake of desferrioxamine-bound iron. FEMS Microbiol. Lett. 20: 439–442.
  2. Clarke T.E., L.W. Tari and H.J. Vogel. 2001. Structural biology of bacterial iron uptake systems. Curr. Top Med. Chem. 1: 7–30.10.2174/1568026013395623
  3. Csaky T.Z. 1948. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2: 450–454.10.3891/acta.chem.scand.02-0450
  4. Deneer H.G., V. Healey and I. Boychuk 1995. Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp. Microbiol. 141: 1985–1992.10.1099/13500872-141-8-1985
  5. Drechsel H. and G. Winkelman. 1997. Iron chelation and siderophores, pp. 1–49. In: Winkelman G. and C.J. Carrano (eds). Transition metals in microbial metabolism. Harwood Academic, Amsterdam. European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2017. MIC determination of non-fastidious and fastidious organisms. EUCAST Version 7.
  6. Fisher K. and C. Phillips. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiol. 155: 1749–1757.
  7. Fontecave M., J. Covès and J.L. Pierre. 1994. Ferric reductases or flavin reductases? Biometals 7: 3–8.10.1007/BF00205187
  8. García-Montoya I.A., T.S. Cendón, S. Arévalo-Gallegos and Q. Rascón-Cruz. 2012. Lactoferrin a multiple bioactive protein: an overview. Biochim. Biophys. Acta. 1820: 226–236.10.1016/j.bbagen.2011.06.018
  9. Gilmore M.S., F. Lebreton and W. van Schaik. 2013. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr. Opin. Microbiol. 16:10–16.10.1016/j.mib.2013.01.006
  10. Harris W.R., C.J. Carrano, S.R. Cooper, S.R. Sofen, A.E Avdeef, J.V. McArdle and K.N. Raymond. 1979. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. J. Am. Chem. Soc.101: 6097–6104.10.1021/ja00514a037
  11. Kanemitsu K., T. Nishino, H. Kunishima, N. Okamura, H. Takemura, H. Yamamoto and M. Kaku. 2001. Quantitative determination of gelatinase activity among enterococci. J. Microbiol. Methods 47: 11–16.10.1016/S0167-7012(01)00283-4
  12. Krewulak K.D. and H.J. Vogel. 2008. Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 1778: 1781–1804.10.1016/j.bbamem.2007.07.02617916327
  13. Kurth C., H. Kageb and M. Nett. 2016. Siderophores as molecular tools in medical and environmental applications. Org. Biomol. Chem. 14: 8212–8227.10.1039/C6OB01400C
  14. Lindsay J.A., T.V. Riley and B.J. Mee. 1995. Staphylococcus aureus but not Staphylococcus epidermidis can acquire iron from transferrin. Microbiol. 141: 197–203.10.1099/00221287-141-1-197
  15. Lisiecki P., P. Wysocki and J. Mikucki. 1999. Occurrence of siderophores in enterococci. Zentralbl. Bakteriol. 289: 807–815.10.1016/S0934-8840(00)80006-7
  16. Marcelis J.H., H.J. den Daas-Slagt and J.A. Hoogkamp-Korstanje. 1978. Iron requirement and chelator production of staphylococci, Streptococcus faecalis and Enterobacteriaceae. Antonie Van Leeuwenhoek 44: 257–267.
  17. Markwell M.A. 1982. A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum. Anal. Biochem. 125: 427–432.10.1016/0003-2697(82)90025-2
  18. Mietzner T.A. and S.A. Morse.1994. The role of iron-binding proteins in the survival of pathogenic bacteria. Annu. Rev. Nutr. 14: 471–493.10.1146/annurev.nu.14.070194.002351
  19. Parker Siburt C.J., T.A. Mietzner and A.L. Crumbliss. 2012. FbpA-a bacterial transferrin with more to offer. Biochim. Biophys. Acta 1820: 379–392.10.1016/j.bbagen.2011.09.001
  20. Ratledge C. and L.G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881–941.10.1146/annurev.micro.54.1.881
  21. Schröder I., E. Johnson and S. de Vries. 2003. Microbial ferric iron reductases. FEMS Microbiol. Rev. 27: 427–447.10.1016/S0168-6445(03)00043-3
  22. Schwyn B. and J.B. Neilands. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160: 47–56.10.1016/0003-2697(87)90612-9
  23. Sheldon J.R., Laakso H.A. and Heinrichs D.E. 2016. Iron Acquisition Strategies of Bacterial Pathogens. Microbiol. Spectr. 4(2): 1–32.
  24. Sobiś-Glinkowska M., J. Mikucki and P. Lisiecki. 2001a. Animal body iron sources utilized in vitro by enterococci (in Polish). Med. Dosw. Mikrobiol. 53: 9–15.
  25. Sobiś-Glinkowska M., J. Mikucki and P. Lisiecki. 2001b. Influence of iron-restricted conditions on growth and hydroxamate siderophore release in enterococci. Acta Microbiol. Pol. 50:179–182.
  26. Strzelecki J., W. Hryniewicz and E. Sadowy. 2011.Gelatinase-associated phenotypes and genotypes among clinical isolates of Enterococcus faecalis in Poland. Pol. J. Microbiol. 60: 287–292.10.33073/pjm-2011-041
  27. Styriak I., A. Lauková, V. Strompfová and A. Ljungh. 2004. Mode of binding of fibrinogen, fibronectin and iron-binding proteins by animal enterococci. Vet. Res. Commun. 28: 587–598.
  28. van Tyne D., M.J. Martin and M.S. Gilmore. 2013. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins 5: 895–911.
  29. Vartivarian S.E., and R.E. Cowart. 1999. Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. Arch. Biochem. Biophys. 364: 75–82.10.1006/abbi.1999.110910087167
  30. Weinberg E.D. 2009. Iron availability and infection. Biochim. Biophys. Acta 1790: 600–605.10.1016/j.bbagen.2008.07.00218675317
  31. Williams P. and E. Griffiths. 1992. Bacterial transferrin receptors-structure, function and contribution to virulence. Med. Microbiol. Immunol. 181: 301–322.
  32. Yuen G.J. and F.M Ausubel. 2014. Enterococcus infection biology: lessons from invertebrate host models. J. Microbiol. 52: 200–210.10.1007/s12275-014-4011-6455628324585051
  33. Zareba T.W., C. Pascu, W. Hryniewicz and T. Wadström. 1997. Binding of extracellular matrix proteins by enterococci. Curr. Microbiol. 34: 6–11.10.1007/s0028499001358939794
DOI: https://doi.org/10.5604/pjm-2017-419 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 419 - 426
Submitted on: Feb 9, 2017
|
Accepted on: May 17, 2017
|
Published on: Dec 4, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 PAWEŁ LISIECKI, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Volume 66 (2017): Issue 4 (December 2017)