Have a personal or library account? Click to login
Simultaneous Biodegradation of Phenol and n-Hexadecane by Cryogel Immobilized Biosurfactant Producing Strain Rhodococcus wratislawiensis BN38 Cover

Simultaneous Biodegradation of Phenol and n-Hexadecane by Cryogel Immobilized Biosurfactant Producing Strain Rhodococcus wratislawiensis BN38

Open Access
|Aug 2016

References

  1. Abdel-Megeed A., N. Al-Harbi and S. Al-Deyab. 2010. Hexadecane degradation by bacterial strains isolated from contaminated soils. African J. Biotechnol. 9: 7487–7494.10.5897/AJB10.638
  2. American Public Health Association (APHA). 1999. American Water Works Association, Water Pollution Control Federation. Standard methods for the examination of water and wastewater. 20th ed. ASM Press, Washington, D. C.
  3. Basha K.M., A. Rajendran and V. Thangavelu. 2010. Recent advances in the biodegradation of phenol: A review. Asian J. Exp. Biol. Sci. 1(2): 219–234.
  4. Cameotra S.S. and P. Singh. 2009. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb. Cell Fact. 8: 16.10.1186/1475-2859-8-16
  5. Dawson C., E. Godsiffe, I. Thompson, T. Ralebitso-Senior, K. Killham and G. Paton. 2007. Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol. Biochem. 39: 164–177.10.1016/j.soilbio.2006.06.020
  6. de Carvalho C.C. and M.M. da Fonseca. 2005. The remarkable Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 67: 715–726.10.1007/s00253-005-1932-3
  7. Finnerty W.R. 1992. The biology and genetics of the genus Rhodo- coccus. Ann. Rev. Microbiol. 46: 193–218.10.1146/annurev.mi.46.100192.001205
  8. Kundu D., C. Hazra, N. Dandi and A. Chaudhari. 2013. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococ- cus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24(6): 775–793.10.1007/s10532-013-9627-4
  9. Kumar A., S. Kumar and S. Kumar. 2005. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC1194. Biochem. Eng. J. 22: 151–159.10.1016/j.bej.2004.09.006
  10. Kumar P.G.N. and K.B. Sumangala. 2012. Fungal degradation of Azo dye-Red 3BN and optimization of physico-chemical parameters. ISCA J. Biol. Sci. 1: 17–24.
  11. Li C., Y. Li, X. Cheng, L. Feng, C. Xi and Y. Zhang. 2013. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Biores. Technol. 131: 390–396.10.1016/j.biortech.2012.12.140
  12. Lozinsky V.I., I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid and B. Mattiasson 2003. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 21: 445–451.10.1016/j.tibtech.2003.08.002
  13. Meggyes T. and F.G. Simon. 2000. Removal of organic and inorganic pollutants from groundwater using Permeable Reactive Barriers. Part 2. Engineering of permeable reactive barriers. Land Con- tam. Reclam. 8: 175–187.
  14. Nair I.C., K. Jayachandran and S. Shashidha. 2008. Biodegradation of Phenol. African J. Biotechnol. 7: 4951–4958.
  15. Pai S.L., Y.L. Hsu, N.M. Chong, C.S. Sheu and C.H. Chen. 1995. Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate. Biores. Tech- nol. 51: 37–42.10.1016/0960-8524(94)00078-F
  16. Pan Y.T., R.R. Drake and A.D. Elbein. 1996. Trehalose-P synthase of mycobacteria: its substrate specificity is affected by polyanions. Glycobiology 6: 453–461.10.1093/glycob/6.4.4538842710
  17. Prieto M., A. Hidalgo, C. Rodrigues-Fernandez, J. Serra and M. Llama. 2002. Biodegradation of phenol in synthetic and industrial waste by Rhodococcus erythropolis UPV-1 immobilized in an air stirred reactor with clarifier. Appl. Microbiol. Biotechnol. 58: 853–859.10.1007/s00253-002-0963-212021809
  18. Rosenberg M., D. Gutnick and E. Rosenberg. 1980. Adherence of bacteria to hydrocarbons: A simple method for measuring cellsurface hydrophobicity. FEMS Microbiol. Lett. 9: 29–33.10.1111/j.1574-6968.1980.tb05599.x
  19. Quek E., Y.-P. Ting and H.M. Tan. 2006. Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Biores. Technol. 97: 32–38.10.1016/j.biortech.2005.02.03116154500
  20. Shetty K., I. Kalifathulla and G. Srinikethan. 2007. Performance of pulsed plate bioreactor for biodegradation of phenol. J. Hazard. Mater. 140: 346–352.10.1016/j.jhazmat.2006.09.05817092642
  21. Sikkema J., J.A. de Bont and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201–222.10.1128/mr.59.2.201-222.19952393607603409
  22. Soudi M.R. and N. Kolahchi. 2011. Bioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1. Progress Biol. Sci. 1: 31–40.
  23. Sun J.-Q., L. Xu, Y.-Q. Tang, F.-M. Chen and X.-L. Wu. 2012. Simultaneous degradation of fenol and n-hexadecane by Acineto- bacter strains. Biores. Technol. 123: 664–668.10.1016/j.biortech.2012.06.07222939600
  24. Tambekar D.H., P.S. Bhorse and P.V. Gadakh. 2012. Biodegradation of phenol by native microorganisms isolated from Lonar Lake in Maharashtra State (India). Int. J. Life Sci. Pharma Res. 2(4): 26–30.
  25. Tuleva B., N. Christova, R. Cohen, G. Stoev and I. Stoineva. 2008. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislavien- sis strain. J. Appl. Microbiol. 104: 1703–1710.10.1111/j.1365-2672.2007.03680.x18194255
  26. Ullrich R. and M. Hofrichter. 2007. Enzymatic hydroxylation of aromatic compounds. Cell M ol. Life Sci. 64: 271–293.10.1007/s00018-007-6362-117221166
  27. van Beilen J.B. and E.G. Funhoff. 2007. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotech- nol. 74: 13–21.10.1007/s00253-006-0748-017216462
  28. van der Geize R. and L. Dijkhuizen. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 7: 255–261.10.1016/j.mib.2004.04.00115196492
  29. Velickova E., P. Petrov, C.H. Tsvetanov, S. Kuzmanova, M. Cvetkov- ska and E. Winkelhausen. 2010. Entrapment of Saccharomyces cere- visiae cells in UV crosslinked hydroxyethylcellulose/poly(ethylene oxide) double-layered gels. React. Funct. Polym. 70: 908–915.10.1016/j.reactfunctpolym.2010.09.004
  30. Yordanova G., D. Ivanova, T. Godjevrova and A. Krastanov. 2009. Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane. Biodegradation 20: 717–726.10.1007/s10532-009-9259-x19340590
  31. Zhao Z., A. Selvam and J.W.-C. Wong. 2011. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Biores. Technol. 102: 3999–4007.10.1016/j.biortech.2010.11.08821208798
DOI: https://doi.org/10.5604/17331331.1215608 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 287 - 293
Submitted on: Oct 20, 2014
Accepted on: Feb 11, 2016
Published on: Aug 26, 2016
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 ALEXANDER E. HRISTOV, NELLY E. CHRISTOVA, LYUDMILA V. KABAIVANOVA, LILYANA V. NACHEVA, IVANKA B. STOINEVA, PETAR D. PETROV, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.