Have a personal or library account? Click to login
Interaction of Gram-Positive and Gram-Negative Bacteria with Ceramic Nanomaterials Obtained by Combustion Synthesis – Adsorption and Cytotoxicity Studies Cover

Interaction of Gram-Positive and Gram-Negative Bacteria with Ceramic Nanomaterials Obtained by Combustion Synthesis – Adsorption and Cytotoxicity Studies

Open Access
|Jun 2016

References

  1. Akhavan O. and E. Ghaderi. 2010. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4: 5731–5736.10.1021/nn101390x
  2. Akhavan O., M. Abdolahad, Y. Abdi and S. Mohajerzadeh. 2011. Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J. Mater Chem. 21: 387–393.10.1039/C0JM02395G
  3. Ams D.A., J.B. Fein, H. Dong and P.A. Maurice. 2004. Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains. Geomicrobiology J. 21: 511–519.10.1080/01490450490888172
  4. Barillet S., A. Simon-Deckers, N. Herlin-Boime, M. MayneL’Hermite, C. Reynaud, D. Cassio, B. Gouget and M. Carrière. 2010. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J. Nanopart Res. 12: 61–73.
  5. Borkowski A., M. Szala and T. Cłapa. 2015. Adsorption studies of the Gram-negative bacteria onto nanostructured silicon carbide. Appl. Biochem. Biotechnol. 175: 1448–1459.10.1007/s12010-014-1374-4
  6. Bourikas K., J. Vakros, C. Kordulis and A. Lycourghiotis. 2003. Potentiometric mass titrations: experimental and theoretical establishment of a new technique for determining the point of zero charge (PZC) of metal (hydr)oxides. J. Phys. Chem. B. 107: 9441–9451.10.1021/jp035123v
  7. Cadet J.T., T. Delatour, D. Douki, J. Gasparutto, J. Pouget, S. Ravanat and S. Sauvaigo. 1999. Hydroxyl radicals and DNA base damage. Mutat Res. 424: 9–21.10.1016/S0027-5107(99)00004-4
  8. Cudziło S., M. Szala, A. Huczko and M. Bystrzejewski. 2007. Combustion reactions of poly(carbon monofluoride), (CF)n with different reductants and characterization of products. Propellants, Explosives, Pyrotechnics 32: 149–154.
  9. Farre M., K. Gajda-Schrantz, L. Kantiani and D. Barcelo. 2009. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 393: 81–95.10.1007/s00216-008-2458-118987850
  10. Fenoglio I., M. Tomatis, D. Lison, J. Muller, A. Fonseca, B.J. Nagy and B. Fubini. 2006. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic. Biol. Med. 40: 1227–1233.10.1016/j.freeradbiomed.2005.11.01016545691
  11. Hossain F., O.J. Perales-Perez, S. Hwang and F. Roman. 2014. Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466–467: 1047–1059.
  12. Huczko A., M. Bystrzejewski, H. Lange, A. Fabianowska, S. Cudziło, A. Panas and M. Szala. 2005. Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B. 109: 16244–16251.10.1021/jp050837m16853065
  13. Jiang D., G. Huang, P. Cai P, X. Rong, and W. Chen. 2007. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Coll. Surf. B: Biointerf. 54: 217–221.10.1016/j.colsurfb.2006.10.03017142018
  14. Joseph L., J.R.V. Flora, Y.G. Park, M. Badawy, H. Saleh and Y. Yoon. 2012. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separation and Purification Technology. 95: 64–72.10.1016/j.seppur.2012.04.033
  15. Kang S., M. Pinault, L.D. Pfefferle L.D and M. Elimelech. 2007. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 23: 8670–8673.10.1021/la701067r17658863
  16. Kang S., M. Herzberg, D.F. Rodrigues and M. Elimelech. 2008a. Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24: 6409–6413.10.1021/la800951v18512881
  17. Kang S., M.S. Mauter and M. Elimelech. 2008b. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42: 7528–7534.10.1021/es801017318939597
  18. Li Q., S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li and P.J.J. Alvarez. 2008. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42: 4591–4602.10.1016/j.watres.2008.08.01518804836
  19. Liu S., T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen. 2011. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 5: 6971–6980.
  20. Lyon D.Y., L.K. Adams, J.C. Falkner and P.J.J. Alvarez. 2006. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ. Sci. Technol. 40: 4360–4366.10.1021/es060365516903271
  21. Qu X., P.J.J. Alvarez and Q. Li. 2013. Application of nanotechnology in water and wastewater treatment. Water Res. 47: 3931–3946.10.1016/j.watres.2012.09.05823571110
  22. Reddy A.R.N., Y.N. Reddy, D.R. Krishna and V. Himabindu. 2010. In vitro cytotoxicity of multi-wall carbon nanotubes on human cell lines. Toxicol. Environ. Chem. 92: 1697–1703.10.1080/02772241003682962
  23. Rivera-Utrilla J., I. Bautista-Toledo, M.A. Ferro-Garcia and C. Moreno-Castilla. 2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 76: 1209–1215.10.1002/jctb.506
  24. Rong X., Q. Huang, X. He, H. Chen H, P. Cai and W. Liang. 2008. Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR. Coll. Surf. B Biointerf. 64: 49–55.10.1016/j.colsurfb.2008.01.00818282693
  25. Savage N. and M.S. Diallo. 2005. Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res. 7: 331–342.10.1007/s11051-005-7523-5
  26. Singh A.V., V. Vyas, R. Patil R, V. Sharma, P.E. Scopelliti, G. Bongiorno, A. Podestà A, C. Lenardi, W.N. Gade and P. Milani. 2011. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE 6(9): e25029.10.1371/journal.pone.0025029
  27. Su R., Y. Jin, M. Tong and H. Kim. 2013. Bactericidal activity of Ag-doped multi-walled carbon nanotubes and the effects of extracellular polymeric substances and natural organic matter. Coll. Surf. B. Biointerf. 104: 133–139.10.1016/j.colsurfb.2012.12.002
  28. Szala M. 2010. Hexachloroethane as an efficient oxidizer in combustion synthesis of carbonaceous and ceramic nanostructures. International Journal of Self-Propagating High-Temperature Synthesis 19: 28–33.10.3103/S106138621001005X
  29. Szala M. and A. Borkowski. 2014. Toxicity assessment of SiC nanofibers and nanorods against bacteria. Ecotoxicol. Environ. Saf. 100: 287–293.10.1016/j.ecoenv.2013.10.030
  30. van der Wal A., W. Norde, A.J.B. Zehnder and J. Lyklema. 1997. Determination of the total charge in the cell walls of Gram-positive bacteria. Coll. Surf. B: Biointerf. 9: 81–100.10.1016/S0927-7765(96)01340-9
  31. Yamamoto O., K. Nakakoshi, T. Sasamoto, H. Nakagawa and K. Miura. 2001. Adsorption and growth inhibition of bacteria on carbon materials containing zinc oxide. Carbon 39: 1643–1651.10.1016/S0008-6223(00)00289-X
  32. Yee N., J.B. Fein and C.J. Daughney. 2000. Experimental study of the pH, ionic strength, and reversibility behaviour of bacteriamineral adsorption. Geochim. Cosmochim. Acta 64: 609–617.
DOI: https://doi.org/10.5604/17331331.1204475 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 161 - 170
Submitted on: Jun 22, 2015
Accepted on: Nov 16, 2015
Published on: Jun 7, 2016
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 ANDRZEJ BORKOWSKI, FILIP OWCZAREK, MATEUSZ SZALA, MAREK SELWET, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.