Have a personal or library account? Click to login
Concept of Semi -Markov Process Cover
Open Access
|Sep 2016

References

  1. [1] Barlow R. E., Proshan F., Statistical theory of reliability and life testing, Holt, Rinchart and Winston, Inc., New York 1975.
  2. [2] Cinlar E., Markov renewal theory, ‘Adv. Appl. Probab.’, 1969, No. 1, pp. 123-187.10.1017/S0001867800037046
  3. [3] Feller W., On semi-Markov processes, ‘Proc. Nat. Acad. Sci.’, 1964, Vol. 51, No. 4, pp. 653-659.10.1073/pnas.51.4.65330013516591166
  4. [4] Grabski F., Theory of Semi-Markov Operation Processes, ‘Zeszyty Naukowe AMW’, 1982, 75A [in Polish].
  5. [5] Grabski F., Semi-Markov models of reliability and operation, IBS PAN, Warsaw 2002 [in Polish].
  6. [6] Grabski F., Semi-Markov Processes: Applications in Systems Reliability and Maintenance, Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Sydney, 2014.
  7. [7] Korolyuk V. S., Turbin A. F., Semi-Markov processes and their applications, Naukova Dumka, Kiev 1976 [in Russian].
  8. [8] Korolyuk V. S., Turbin A. F., Markov Renewal Processes in Problems of Systems Reliability, Naukova Dumka, Kiev 1982 [in Russian].
  9. [9] Lev’y P., Proceesus semi-markoviens, Proc. Int. Cong. Math, Amsterdam 1954, pp. 416-426.
  10. [10] Limnios N., Oprisan G., Semi-Markov Processes and Reliability, Birkhauser, Boston 2001.10.1007/978-1-4612-0161-8
  11. [11] Pyke R., Markov renewal processes: definitions and preliminary properties, ‘Ann. of Math. Statist.’, 1961, Vol. 32, pp. 1231-1242.10.1214/aoms/1177704863
  12. [12] Pyke R., Markov renewal processes with finitely many states, ‘Ann. of Math. Statist.’, 1961, Vol. 32, pp. 1243-1259.10.1214/aoms/1177704864
  13. [13] Pyke R., Schaufele R., Limit theorems for Markov renewal processes, ‘Ann. of Math. Statist.’, 1964, Vol. 32, pp. 1746-1764.10.1214/aoms/1177700397
  14. [14] Silvestrov D. C., Semi-Markov processes with a discrete state space, Sovetskoe Radio, Moskow 1980 [in Russian].
  15. [15] Smith W. L., Regenerative stochastic processes, ‘Proc. Roy. Soc.’, 1955, Series A, 232, pp. 6-31.10.1098/rspa.1955.0198
  16. [16] Takács L., Some investigations concerning recurrent stochastic processes of a certain type, ‘Magyar Tud. Akad. Mat. Kutato Int. Kzl.’, 1954, 3, pp. 115-128.
Language: English
Page range: 25 - 36
Published on: Sep 30, 2016
Published by: Polish Naval Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Franciszek Grabski, published by Polish Naval Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.