Bae S.H., Sung S.H., Oh S.Y., Lim J.M., Lee S.K., Park Y.N., Lee H.E., Kang D., Rhee S.G.: Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab., 2013; 17: 73–84
Blokh D., Stambler I.: The application of information theory for the research of aging and aging-related diseases. Prog. Neurobiol., 2017; 157: 158–173
Budanov A.V., Kovaleva I., Tokarchuk A., Zheltukhin A.O., Dalina A.A., Lyamzaev K.G., Haidurov A., Chumakov P.M.: Mitochondrial localization and function of SESN2. FASEB J., 2020; 34: 1
Budanov A.V., Shoshani T., Faerman A., Zelin E., Kamer I., Kalinski H., Gorodin S., Fishman A., Chajut A., Einat P., Skaliter R., Gudkov A.V., Chumakov P.M., Feinstein E.: Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene, 2002; 21: 6017–6031
Buendia I., Michalska P., Navarro E., Gameiro I., Egea J., León R.: Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther., 2016; 157: 84–104
Çelik H., Karahan H., Kelicen-Uğur P.: Effect of atorvastatin on Aβ1-42-induced alteration of SESN2, SIRT1, LC3II and TPP1 protein expressions in neuronal cell cultures. J. Pharm. Pharmacol., 2020; 72: 424–436
Chai D., Wang G., Zhou Z., Yang H., Yu Z.: Insulin increases Sestrin 2 content by reducing its degradation through the PI3K/mTOR signaling pathway. Int. J. Endocrinol., 2015; 2015: 505849
Chen C.C., Jeon S.M., Bhaskar P.T., Nogueira V., Sundararajan D., Tonic I., Park Y., Hay N.: FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev. Cell, 2010; 18: 592–604
Chen H., Wang X., Tong M., Wu D., Wu S., Chen J., Wang X., Wang X., Kang Y., Tang H., Tang C., Jiang W.: Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy. PLoS One, 2013; 8: e64757
Chen K.B., Xuan Y., Shi W.J., Chi F., Xing R., Zeng Y.C.: Sestrin2 expression is a favorable prognostic factor in patients with non-small cell lung cancer. Am. J. Transl. Res., 2016; 8: 1903–1909
Chen S.D., Yang J.L., Lin T.K., Yang D.I.: Emerging roles of sestrins in neurodegenerative diseases: Counteracting oxidative stress and beyond. J. Clin. Med., 2019; 8: 1001
Cheung P.C., Salt I.P., Davies S.P., Hardie D.G., Carling D.: Characterization of AMP-activated protein kinase gamma-subunit iso-forms and their role in AMP binding. Biochem. J., 2000; 346: 659–669
Cordani M., Sánchez-Álvarez M., Strippoli R., Bazhin A.V., Donadelli M.: Sestrins at the interface of ROS control and autophagy regulation in health and disease. Oxid. Med. Cell. Longev., 2019; 2019: 1283075
Costanzo-Garvey D.L., Pfluger P.T., Dougherty M.K., Stock J.L., Boehm M., Chaika O., Fernandez M.R., Fisher K., Kortum R.L., Hong E.G., Jun J.Y., Ko H.J., Schreiner A., Volle D.J., Treece T. i wsp.: KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab., 2009; 10: 366–378
Crute B.E., Seefeld K., Gamble J., Kemp B.E., Witters L.A.: Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem., 1998; 273: 35347–35354
Ding B., Parmigiani A., Yang C., Budanov A.V.: Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation. Cell Cycle, 2015; 14: 3231–3241
Dong B., Xue R., Sun Y., Dong Y., Liu C.: Sestrin 2 attenuates neonatal rat cardiomyocyte hypertrophy induced by phenylephrine via inhibiting ERK1/2. Mol. Cell Biochem., 2017; 433: 113–123
Fan W., Tang Z., Chen D., Moughon D., Ding X., Chen S., Zhu M., Zhong Q.: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy, 2010; 6: 614–621
Hardie D.G., Ross F.A., Hawley S.A.: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol., 2012; 13: 251–262
Hwang H.J., Jung T.W., Choi J.H., Lee H.J., Chung H.S., Seo J.A., Kim S.G., Kim N.H., Choi K.M., Choi D.S., Baik S.H., Yoo H.J.: Knockdown of sestrin2 increases pro-inflammatory reactions and ER stress in the endothelium via an AMPK dependent mechanism. Biochim. Biophys. Acta, 2017; 1863: 1436–1444
Inoki K., Guan K.L.: Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum. Mol. Genet., 2009; 18: R94–R100
Kansanen E., Kuosmanen S.M., Leinonen H., Levonen A.L.: The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol., 2013; 1: 45–49
Karpińska A., Gromadzka G.: Stres oksydacyjny i naturalne mechanizmy antyoksydacyjne – znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych. Postępy Hig. Med. Dośw., 2013; 67: 43–53
Kim G.T., Lee S.H., Kim Y.M.: Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells. J. Cancer Prev., 2013; 18: 264–270
Kim H., An S., Ro S.H., Teixeira F., Park G.J., Kim C., Cho C.S., Kim J.S., Jakob U., Lee J.H., Cho U.S.: Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat. Commun., 2015; 6: 10025
Kim H., Yin K., Falcon D.M., Xue X.: The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicol. Appl. Pharmacol., 2019; 374: 77–85
Kim M., Sujkowski A., Namkoong S., Gu B., Cobb T., Kim B., Kowalsky A.H., Cho C.S., Semple I., Ro S.H., Davis C., Brooks S.V., Karin M., Wessells R.J., Lee J.H.: Sestrins are evolutionarily conserved mediators of exercise benefits. Nat. Commun., 2020; 11: 190
Kim M.J., Bae S.H., Ryu J.C., Kwon Y., Oh J.H., Kwon J., Moon J.S., Kim K., Miyawaki A., Lee M.G., Shin J., Kim Y.S., Kim C.H., Ryter S.W., Choi A.M. i wsp.: SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy, 2016; 12: 1272–1291
Lee J.H., Budanov A.V., Park E.J., Birse R., Kim T.E., Perkins G.A., Ocorr K., Ellisman M.H., Bodmer R., Bier E., Karin M.: Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science, 2010; 327: 1223–1228
Lee J.H., Budanov A.V., Talukdar S., Park E.J., Park H.L., Park H.W., Bandyopadhyay G., Li N., Aghajan M., Jang I., Wolfe A.M., Perkins G.A., Ellisman M.H., Bier E., Scadeng M. i wsp.: Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab., 2012; 16: 311–321
Liao H.H., Ruan J.Y., Liu H.J., Liu Y., Feng H., Tang Q.Z.: Sestrin family may play important roles in the regulation of cardiac pathophysiology. Int. J. Cardiol., 2016; 202: 183–184
Liu X., Niu Y., Yuan H., Huang J., Fu L.: AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism, 2015; 64: 658–665
Miki Y., Tanji K., Mori F., Utsumi J., Sasaki H., Kakita A., Takahashi H., Wakabayashi K.: Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. Neurosci. Lett., 2018; 684: 35–41
Morrison A., Chen L., Wang J., Zhang M., Yang H., Ma Y., Budanov A., Lee J.H., Karin M., Li J.: Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J., 2015; 29: 408–417
Quan N., Wang L., Chen X., Luckett C., Cates C., Rousselle T., Zheng Y., Li J.: Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1α pathway. J. Mol. Cell. Cardiol., 2018; 115: 170–178
Reznick R.M., Zong H., Li J., Morino K., Moore I.K., Yu H.J., Liu Z.X., Dong J., Mustard K.J., Hawley S.A., Befroy D., Pypaert M., Hardie D.G., Young L.H., Shulman G.I.: Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab., 2007; 5: 151–156
Ro S.H., Semple I.A., Park H., Park H., Park H.W., Kim M., Kim J.S., Lee J.H.: Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J., 2014; 281: 3816–3827
Sánchez-Álvarez M., Strippoli R., Donadelli M., Bazhin A.V., Cordani M.: Sestrins as a therapeutic bridge between ROS and autophagy in cancer. Cancers, 2019; 11: 1415
Sanli T., Linher-Melville K., Tsakiridis T., Singh G.: Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells. PLoS One, 2012; 7: e32035
Sun G., Xue R., Yao F., Liu D., Huang H., Chen C., Li Y., Zeng J., Zhang G., Dong Y., Liu C.: The critical role of Sestrin 1 in regulating the proliferation of cardiac fibroblasts. Arch. Biochem. Biophys., 2014; 542: 1–6
Sun W., Wang Y., Zheng Y., Quan N.: The emerging role of sestrin2 in cell metabolism, and cardiovascular and age-related diseases. Aging Dis., 2020; 11: 154–163
Tao R., Xiong X., Liangpunsakul S., Dong X.C.: Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling. Diabetes, 2015; 64: 1211–1223
Velasco-Miguel S., Buckbinder L., Jean P., Gelbert L., Talbott R., Laidlaw J., Seizinger B., Kley N.: PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene, 1999; 18: 127–137
Wolfson R.L., Chantranupong L., Saxton R.A., Shen K., Scaria S.M., Cantor J.R., Sabatini D.M.: Sestrin2 is a leucine sensor for the mTORC1 pathway. Science, 2016; 351: 43–48
Xie M., Zhang D., Dyck J.R., Li Y., Zhang H., Morishima M., Mann D.L., Taffet G.E., Baldini A., Khoury D.S., Schneider M.D.: A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci. USA, 2006; 103: 17378–17383
Xu Y.P., Han F., Tan J.: Edaravone protects the retina against ischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway. Mol. Med. Rep., 2017; 16: 9210–9216
Xue R., Zeng J., Chen Y., Chen C., Tan W., Zhao J., Dong B., Sun Y., Dong Y., Liu C.: Sestrin 1 ameliorates cardiac hypertrophy via autophagy activation. J. Cell. Mol. Med., 2017; 21: 1193–1205
Yang J.H., Kim K.M., Kim M.G., Seo K.H., Han J.Y., Ka S.O., Park B.H., Shin S.M., Ku S.K., Cho I.J., Ki S.H.: Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic. Biol. Med., 2015; 78: 156–167
Yu R., Chen C., Mo Y.Y., Hebbar V., Owuor E.D., Tan T.H., Kong A.N.: Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem., 2000; 275: 39907–39913
Zhang Z., Qian Q., Li M., Shao F., Ding W.X., Lira V.A., Chen S.X., Sebag S.C., Hotamisligil G.S., Cao H., Yang L.: The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy, 2020; DOI: 10.1080/15548627.2020.1788889
Zhou D., Zhan C., Zhong Q., Li S.: Upregulation of sestrin-2 expression via P53 protects against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity. J. Mol. Neurosci., 2013; 51: 967–975