Have a personal or library account? Click to login

Sestryny jako modulatory procesów starzenia i chorób związanych z wiekiem*

Open Access
|Jun 2021

References

  1. Averous J., Fonseca B.D., Proud C.G.: Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene, 2008; 27: 1106–1113
  2. Bae E.J., Xu J., Oh D.Y., Bandyopadhyay G., Lagakos W.S., Keshwani M., Olefsky J.M.: Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance. J. Biol. Chem., 2012; 287: 18769–18780
  3. Bae S.H., Sung S.H., Oh S.Y., Lim J.M., Lee S.K., Park Y.N., Lee H.E., Kang D., Rhee S.G.: Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab., 2013; 17: 73–84
  4. Blokh D., Stambler I.: The application of information theory for the research of aging and aging-related diseases. Prog. Neurobiol., 2017; 157: 158–173
  5. Budanov A.V.: Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Anti-oxid. Redox Signal., 2011; 15: 1679–1690
  6. Budanov A.V., Karin M.: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 2008; 134: 451–460
  7. Budanov A.V., Kovaleva I., Tokarchuk A., Zheltukhin A.O., Dalina A.A., Lyamzaev K.G., Haidurov A., Chumakov P.M.: Mitochondrial localization and function of SESN2. FASEB J., 2020; 34: 1
  8. Budanov A.V., Lee J.H., Karin M.: Stressin’ Sestrins take an aging fight. EMBO Mol. Med., 2010; 2: 388–400
  9. Budanov A.V., Shoshani T., Faerman A., Zelin E., Kamer I., Kalinski H., Gorodin S., Fishman A., Chajut A., Einat P., Skaliter R., Gudkov A.V., Chumakov P.M., Feinstein E.: Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene, 2002; 21: 6017–6031
  10. Buendia I., Michalska P., Navarro E., Gameiro I., Egea J., León R.: Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther., 2016; 157: 84–104
  11. Çelik H., Karahan H., Kelicen-Uğur P.: Effect of atorvastatin on Aβ1-42-induced alteration of SESN2, SIRT1, LC3II and TPP1 protein expressions in neuronal cell cultures. J. Pharm. Pharmacol., 2020; 72: 424–436
  12. Chai D., Wang G., Zhou Z., Yang H., Yu Z.: Insulin increases Sestrin 2 content by reducing its degradation through the PI3K/mTOR signaling pathway. Int. J. Endocrinol., 2015; 2015: 505849
  13. Chan E.Y.: Regulation and function of uncoordinated-51 like kinase proteins. Antioxid. Redox Signal., 2012; 17: 775–785
  14. Chen C.C., Jeon S.M., Bhaskar P.T., Nogueira V., Sundararajan D., Tonic I., Park Y., Hay N.: FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev. Cell, 2010; 18: 592–604
  15. Chen H., Wang X., Tong M., Wu D., Wu S., Chen J., Wang X., Wang X., Kang Y., Tang H., Tang C., Jiang W.: Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy. PLoS One, 2013; 8: e64757
  16. Chen K.B., Xuan Y., Shi W.J., Chi F., Xing R., Zeng Y.C.: Sestrin2 expression is a favorable prognostic factor in patients with non-small cell lung cancer. Am. J. Transl. Res., 2016; 8: 1903–1909
  17. Chen S.D., Yang J.L., Lin T.K., Yang D.I.: Emerging roles of sestrins in neurodegenerative diseases: Counteracting oxidative stress and beyond. J. Clin. Med., 2019; 8: 1001
  18. Chen Y.R., Zweier J.L.: Cardiac mitochondria and reactive oxygen species generation. Circ. Res., 2014; 114: 524–537
  19. Chen Y.S., Chen S.D., Wu C.L., Huang S.S., Yang D.I.: Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp. Neurol., 2014; 253: 63–71
  20. Cheung P.C., Salt I.P., Davies S.P., Hardie D.G., Carling D.: Characterization of AMP-activated protein kinase gamma-subunit iso-forms and their role in AMP binding. Biochem. J., 2000; 346: 659–669
  21. Cordani M., Sánchez-Álvarez M., Strippoli R., Bazhin A.V., Donadelli M.: Sestrins at the interface of ROS control and autophagy regulation in health and disease. Oxid. Med. Cell. Longev., 2019; 2019: 1283075
  22. Costanzo-Garvey D.L., Pfluger P.T., Dougherty M.K., Stock J.L., Boehm M., Chaika O., Fernandez M.R., Fisher K., Kortum R.L., Hong E.G., Jun J.Y., Ko H.J., Schreiner A., Volle D.J., Treece T. i wsp.: KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab., 2009; 10: 366–378
  23. Crute B.E., Seefeld K., Gamble J., Kemp B.E., Witters L.A.: Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem., 1998; 273: 35347–35354
  24. Cuervo A.M., Macian F.: Autophagy and the immune function in aging. Curr. Opin. Immunol., 2014; 29: 97–104
  25. Ding B., Parmigiani A., Yang C., Budanov A.V.: Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation. Cell Cycle, 2015; 14: 3231–3241
  26. Dong B., Xue R., Sun Y., Dong Y., Liu C.: Sestrin 2 attenuates neonatal rat cardiomyocyte hypertrophy induced by phenylephrine via inhibiting ERK1/2. Mol. Cell Biochem., 2017; 433: 113–123
  27. Fan W., Tang Z., Chen D., Moughon D., Ding X., Chen S., Zhu M., Zhong Q.: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy, 2010; 6: 614–621
  28. Finkel T., Holbrook N.J.: Oxidants, oxidative stress and the biology of ageing. Nature, 2000; 408: 239–247
  29. Gabryel B., Kost A., Kasprowska D.: Neuronal autophagy in cerebral ischemia – a potential target for neuroprotective strategies? Pharmacol. Rep., 2012; 64: 1–15
  30. Gkikas I., Petratou D., Tavernarakis N.: Longevity pathways and memory aging. Front Genet., 2014; 5: 155
  31. Hardie D.G., Ross F.A., Hawley S.A.: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol., 2012; 13: 251–262
  32. Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., Iemura S., Natsume T., Takehana K., Yamada N., Guan J.L., Oshiro N., Mizushima N.: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell, 2009; 20: 1981–1991
  33. Hou Y.S., Guan J.J., Xu H.D., Wu F., Sheng R., Qin Z.H.: Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation. Mol. Cell. Biol., 2015; 35: 2740–2751
  34. Howell J.J., Manning B.D.: mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab., 2011; 22: 94–102
  35. Hwang H.J., Jung T.W., Choi J.H., Lee H.J., Chung H.S., Seo J.A., Kim S.G., Kim N.H., Choi K.M., Choi D.S., Baik S.H., Yoo H.J.: Knockdown of sestrin2 increases pro-inflammatory reactions and ER stress in the endothelium via an AMPK dependent mechanism. Biochim. Biophys. Acta, 2017; 1863: 1436–1444
  36. Hybertson B.M., Gao B., Bose S.K., McCord J.M.: Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Aspects Med., 2011; 32: 234–246
  37. Inoki K., Guan K.L.: Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum. Mol. Genet., 2009; 18: R94–R100
  38. Kansanen E., Kuosmanen S.M., Leinonen H., Levonen A.L.: The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol., 2013; 1: 45–49
  39. Karpińska A., Gromadzka G.: Stres oksydacyjny i naturalne mechanizmy antyoksydacyjne – znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych. Postępy Hig. Med. Dośw., 2013; 67: 43–53
  40. Kim G.T., Lee S.H., Kim Y.M.: Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells. J. Cancer Prev., 2013; 18: 264–270
  41. Kim H., An S., Ro S.H., Teixeira F., Park G.J., Kim C., Cho C.S., Kim J.S., Jakob U., Lee J.H., Cho U.S.: Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat. Commun., 2015; 6: 10025
  42. Kim H., Yin K., Falcon D.M., Xue X.: The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicol. Appl. Pharmacol., 2019; 374: 77–85
  43. Kim J., Kundu M., Viollet B., Guan K.L.: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011; 13: 132–141
  44. Kim M., Sujkowski A., Namkoong S., Gu B., Cobb T., Kim B., Kowalsky A.H., Cho C.S., Semple I., Ro S.H., Davis C., Brooks S.V., Karin M., Wessells R.J., Lee J.H.: Sestrins are evolutionarily conserved mediators of exercise benefits. Nat. Commun., 2020; 11: 190
  45. Kim M.J., Bae S.H., Ryu J.C., Kwon Y., Oh J.H., Kwon J., Moon J.S., Kim K., Miyawaki A., Lee M.G., Shin J., Kim Y.S., Kim C.H., Ryter S.W., Choi A.M. i wsp.: SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy, 2016; 12: 1272–1291
  46. Kovaleva I.E., Tokarchuk A.V., Zheltukhin A.O., Dalina A.A., Safronov G.G., Evstafieva A.G., Lyamzaev K.G., Chumakov P.M., Budanov A.V.: Mitochondrial localization of SESN2. PLoS One, 2020; 15: e0226862
  47. Laplante M., Sabatini D.M.: mTOR signaling at a glance. J. Cell Sci., 2009; 122: 3589–3594
  48. Lee J.H., Budanov A.V., Karin M.: Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab., 2013; 18: 792–801
  49. Lee J.H., Budanov A.V., Park E.J., Birse R., Kim T.E., Perkins G.A., Ocorr K., Ellisman M.H., Bodmer R., Bier E., Karin M.: Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science, 2010; 327: 1223–1228
  50. Lee J.H., Budanov A.V., Talukdar S., Park E.J., Park H.L., Park H.W., Bandyopadhyay G., Li N., Aghajan M., Jang I., Wolfe A.M., Perkins G.A., Ellisman M.H., Bier E., Scadeng M. i wsp.: Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab., 2012; 16: 311–321
  51. Liao H.H., Ruan J.Y., Liu H.J., Liu Y., Feng H., Tang Q.Z.: Sestrin family may play important roles in the regulation of cardiac pathophysiology. Int. J. Cardiol., 2016; 202: 183–184
  52. Liu G.Y., Sabatini D.M.: mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol., 2020; 21: 183–203
  53. Liu X., Niu Y., Yuan H., Huang J., Fu L.: AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism, 2015; 64: 658–665
  54. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G.: The hallmarks of aging. Cell, 2013; 153: 1194–1217
  55. Mamane Y., Petroulakis E., Rong L., Yoshida K., Ler L.W., Sonenberg N.: eIF4E – from translation to transformation. Oncogene, 2004; 23: 3172–3179
  56. Miki Y., Tanji K., Mori F., Utsumi J., Sasaki H., Kakita A., Takahashi H., Wakabayashi K.: Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. Neurosci. Lett., 2018; 684: 35–41
  57. Mizushima N.: Autophagy: Process and function. Genes Dev., 2007; 21: 2861–2873
  58. Morrison A., Chen L., Wang J., Zhang M., Yang H., Ma Y., Budanov A., Lee J.H., Karin M., Li J.: Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J., 2015; 29: 408–417
  59. Niture S.K., Khatri R., Jaiswal A.K.: Regulation of Nrf2 – an update. Free Radic. Biol. Med., 2014; 66: 36–44
  60. Oakhill J.S., Scott J.W., Kemp B.E.: AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol. Metab., 2012; 23: 125–132
  61. Ozcan U., Cao Q., Yilmaz E., Lee A.H., Iwakoshi N.N., Ozdelen E., Tuncman G., Görgün C., Glimcher L.H., Hotamisligil G.S.: Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science, 2004; 306: 457–461
  62. Piantadosi C.A., Carraway M.S., Babiker A., Suliman H.B.: Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ. Res., 2008; 103: 1232–1240
  63. Pickard L., Palladino G., Okosun J.: Follicular lymphoma genomics. Leuk. Lymphoma, 2020; 61: 2313–2323
  64. Polewska J.: Autofagia – mechanizm molekularny, apoptoza i nowotwory. Postępy Hig. Med. Dośw., 2012; 66: 921–936
  65. Quan N., Wang L., Chen X., Luckett C., Cates C., Rousselle T., Zheng Y., Li J.: Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1α pathway. J. Mol. Cell. Cardiol., 2018; 115: 170–178
  66. Rai N., Dey S.: Protective response of Sestrin under stressful conditions in aging. Ageing Res. Rev., 2020; 64: 101186
  67. Reznick R.M., Zong H., Li J., Morino K., Moore I.K., Yu H.J., Liu Z.X., Dong J., Mustard K.J., Hawley S.A., Befroy D., Pypaert M., Hardie D.G., Young L.H., Shulman G.I.: Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab., 2007; 5: 151–156
  68. Ro S.H., Semple I.A., Park H., Park H., Park H.W., Kim M., Kim J.S., Lee J.H.: Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J., 2014; 281: 3816–3827
  69. Sablina A.A.., Budanov A.V., Ilyinskaya G.V., Agapova L.S., Kravchenko J.E., Chumakov P.M.: The antioxidant function of the p53 tumor suppressor. Nat. Med., 2005; 11: 1306–1313
  70. Sánchez-Álvarez M., Strippoli R., Donadelli M., Bazhin A.V., Cordani M.: Sestrins as a therapeutic bridge between ROS and autophagy in cancer. Cancers, 2019; 11: 1415
  71. Sanli T., Linher-Melville K., Tsakiridis T., Singh G.: Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells. PLoS One, 2012; 7: e32035
  72. Saxton R.A., Knockenhauer K.E., Wolfson R.L., Chantranupong L., Pacold M.E., Wang T., Schwartz T.U., Sabatini D.M.: Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science, 2016; 351: 53–58
  73. Shaw R.J.: LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol., 2009; 196: 65–80
  74. Shin B.Y., Jin S.H., Cho I.J., Ki S.H.: Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radic. Biol. Med., 2012; 53: 834–841
  75. Sun G., Xue R., Yao F., Liu D., Huang H., Chen C., Li Y., Zeng J., Zhang G., Dong Y., Liu C.: The critical role of Sestrin 1 in regulating the proliferation of cardiac fibroblasts. Arch. Biochem. Biophys., 2014; 542: 1–6
  76. Sun W., Wang Y., Zheng Y., Quan N.: The emerging role of sestrin2 in cell metabolism, and cardiovascular and age-related diseases. Aging Dis., 2020; 11: 154–163
  77. Tao R., Xiong X., Liangpunsakul S., Dong X.C.: Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling. Diabetes, 2015; 64: 1211–1223
  78. Velasco-Miguel S., Buckbinder L., Jean P., Gelbert L., Talbott R., Laidlaw J., Seizinger B., Kley N.: PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene, 1999; 18: 127–137
  79. Wei J.L., Fu Z.X., Fang M., Guo J.B., Zhao Q.N., Lu W.D., Zhou Q.Y.: Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer. Oncol. Rep., 2015; 33: 1349–1357
  80. Wolfson R.L., Chantranupong L., Saxton R.A., Shen K., Scaria S.M., Cantor J.R., Sabatini D.M.: Sestrin2 is a leucine sensor for the mTORC1 pathway. Science, 2016; 351: 43–48
  81. Wullschleger S., Loewith R., Hall M.N.: TOR signaling in growth and metabolism. Cell, 2006; 124: 471–484
  82. Xie M., Zhang D., Dyck J.R., Li Y., Zhang H., Morishima M., Mann D.L., Taffet G.E., Baldini A., Khoury D.S., Schneider M.D.: A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci. USA, 2006; 103: 17378–17383
  83. Xu Y.P., Han F., Tan J.: Edaravone protects the retina against ischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway. Mol. Med. Rep., 2017; 16: 9210–9216
  84. Xue R., Zeng J., Chen Y., Chen C., Tan W., Zhao J., Dong B., Sun Y., Dong Y., Liu C.: Sestrin 1 ameliorates cardiac hypertrophy via autophagy activation. J. Cell. Mol. Med., 2017; 21: 1193–1205
  85. Yang J.H., Kim K.M., Kim M.G., Seo K.H., Han J.Y., Ka S.O., Park B.H., Shin S.M., Ku S.K., Cho I.J., Ki S.H.: Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic. Biol. Med., 2015; 78: 156–167
  86. Yu R., Chen C., Mo Y.Y., Hebbar V., Owuor E.D., Tan T.H., Kong A.N.: Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem., 2000; 275: 39907–39913
  87. Yu Y., Yoon S.O., Poulogiannis G., Yang Q., Ma X.M., Villén J., Kubica N., Hoffman G.R., Cantley L.C., Gygi S.P., Blenis J.: Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science, 2011; 332: 1322–1326
  88. Zhang J.: Teaching the basics of autophagy and mitophagy to redox biologists –mechanisms and experimental approaches. Redox Biol., 2015; 4: 242–259
  89. Zhang Z., Qian Q., Li M., Shao F., Ding W.X., Lira V.A., Chen S.X., Sebag S.C., Hotamisligil G.S., Cao H., Yang L.: The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy, 2020; DOI: 10.1080/15548627.2020.1788889
  90. Zhou D., Zhan C., Zhong Q., Li S.: Upregulation of sestrin-2 expression via P53 protects against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity. J. Mol. Neurosci., 2013; 51: 967–975
  91. Zighelboim I., Goodfellow P.J., Schmidt A.P., Walls K.C., Mallon M.A., Mutch D.G., Yan P.S., Huang T.H., Powell M.A.: Differential methylation hybridization array of endometrial cancers reveals two novel cancer-specific methylation markers. Clin. Cancer Res., 2007; 13: 2882–2889
Language: English
Page range: 437 - 447
Submitted on: Jul 11, 2020
Accepted on: Mar 9, 2021
Published on: Jun 18, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Bożena Gabryel, Roksana Duszkiewicz, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.