Anderson K.L., Rajagovindan R., Ghacibeh G.A., Meador K.J., Ding M.: Theta oscillations mediate interaction between prefrontal cortex and medial temporal lobe in human memory. Cereb. Cortex, 2010; 20: 1604–1612
Bastiaansen M., Hagoort P.: Oscillatory neuronal dynamics during language comprehension. W: Progress in Brain Research. red.: C. Neuper, W. Klimesch. Elsevier, 2006; 179–196
Bland B.H., Colom L.V., Ford R.D.: Responses of septal θ-on and θ-off cells to activation of the dorsomedial-posterior hypothalamic region. Brain Res. Bull., 1990; 24: 71–79
Bland B.H., Konopacki J., Kirk I.J., Oddie S.D., Dickson C.T.: Discharge patterns of hippocampal theta-related cells in the caudal diencephalon of the urethan-anesthetized rat. J. Neurophysiol., 1995; 74: 322–333
Bland B.H., Oddie S.D.: Theta band oscillation and synchrony in the hippocampal formation and associated structures: The case for its role in sensorimotor integration. Behav. Brain Res., 2001; 127: 119–136
Bland B.H., Oddie S.D., Colom L.V.: Mechanisms of neural synchrony in the septohippocampal pathways underlying hippocampal theta generation. J. Neurosci., 1999; 19: 3223–3237
Bland B.H., Vanderwolf C.H.: Diencephalic and hippocampal mechanisms of motor activity in the rat: Effects of posterior hypothalamic stimulation on behavior and hippocampal slow wave activity. Brain Res., 1972; 43: 67–88
Bocian R., Caban B., Kłos-Wojtczak P., Konopacki J., Kowalczyk T.: Is electrical coupling involved in the generation of posterior hypothalamic theta rhythm? Eur. J. Neurosci., 2016; 44: 2324–2333
Borhegyi Z., Maglóczky Z., Acsády L., Freund T.F.: The supramammillary nucleus innervates cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca complex. Neuroscience, 1998; 82: 1053–1065
Bódizs R., Kántor S., Szabó G., Szûcs A., Erõss L., Halász P.: Rhythmic hippocampal slow oscillation characterizes REM sleep in humans. Hippocampus, 2001; 11: 747–753
Caban B., Staszelis A., Kazmierska P., Kowalczyk T., Konopacki J.: Postnatal development of the posterior hypothalamic theta rhythm and local cell discharges in rat brain slices. Dev. Neurobiol., 2018; 78: 1049–1063
Carnes M., Lent S., Feyzi J., Hazel D.: Plasma adrenocorticotropic hormone in the rat demonstrates three different rhythms within 24 h. Neuroendocrinology, 1989; 50: 17–25
Coleman J.R., Lindsley D.B.: Behavioral and hippocampal electrical changes during operant learning in cats and effects of stimulating two hypothalamic-hippocampal systems. Electroencephalogr. Clin. Neurophysiol., 1977; 42: 309–331
Datta S., Siwek D.F.: Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J. Neurophysiol., 1997; 77: 2975–2988
Dickson C.T., Kirk I.J., Oddie S.D., Bland B.H.: Classification of theta-related cells in the entorhinal cortex: Cell discharges are controlled by the ascending brainstem synchronizing pathway in parallel with hippocampal theta-related cells. Hippocampus, 1995; 5: 306–319
Dickson C.T., Trepel C., Bland B.H.: Extrinsic modulation of theta field activity in the entorhinal cortex of the anesthetized rat. Hippocampus, 1994; 4: 37–51
Ekstrom A.D., Caplan J.B., Ho E., Shattuck K., Fried I., Kahana M.J.: Human hippocampal theta activity during virtual navigation. Hippocampus, 2005; 15: 881–889
Gallego-Jutglà E., Solé-Casals J., Vialatte F.B., Dauwels J., Cichocki A.: A theta-band EEG based index for early diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2015; 43: 1175–1184
Gołebiewski H., Eckersdorf B., Konopacki J.: Cholinergic/GABAergic interaction in the production of EEG theta oscillations in rat hippocampal formation in vitro. Acta Neurobiol. Exp., 1996; 56: 147–153
Grass K., Prast H., Philippu A.: Ultradian rhythm in the delta and theta frequency bands of the EEG in the posterior hypothalamus of the rat. Neurosci. Lett., 1995; 191: 161–164
Green J.D., Maxwell D.S., Schindler W.J., Stumpf C.: Rabbit eeg „theta” rhythm: Its anatomical source and relation to activity in single neurons. J. Neurophysiol., 1960; 23: 403–420
Hata T., Nishimura Y., Kita T., Kawabata A., Itoh E.: Electrocorticogram in rats loaded with SART stress (repeated cold stress). Jpn. J. Pharmacol., 1987; 45: 365–372
Huerta P.T., Lisman J.E.: Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron, 1995; 15: 1053–1063
Jellinck P.H., Monder C., McEwen B.S., Sakai R.R.: Differential inhibition of 11 beta-hydroxysteroid dehydrogenase by carbenoxolone in rat brain regions and peripheral tissues. J. Steroid Biochem. Mol. Biol., 1993; 46: 209–213
Kawakami M., Kimura F., Tsai C.W.: Relationship between the three-hour-period sleep-wakefulness cycle and growth hormone secretion in the immature rat. J. Physiol., 1984; 348: 271–283
Kawamura H., Nakamura Y., Tokizane T.: Effect of acute brain stem lesions on the electrical activities of the limbic system and neocortex. Jpn. J. Physiol., 1961; 11: 564–575
Kirk I.J.: Frequency modulation of hippocampal theta by the supramammillary nucleus, and other hypothalamo–hippocampal interactions: Mechanisms and functional implications. Neurosci. Biobehav. Rev., 1998; 22: 291–302
Kirk I.J., McNaughton N.: Mapping the differential effects of procaine on frequency and amplitude of reticularly elicited hippocampal rhythmical slow activity. Hippocampus, 1993; 3: 517–525
Kirk I.J., Oddie S.D., Konopacki J., Bland B.H.: Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta-related cellular discharge by ascending and descending pathways. J. Neurosci., 1996; 16: 5547–5554
Kiss J., Csáki A., Bokor H., Kocsis K., Kocsis B.: Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [(3)H]D-aspartate labelling and immunocytochemistry. Neuroscience, 2002; 111: 671–691
Kiss J., Csáki A., Bokor H., Shanabrough M., Leranth C.: The supramammillo-hippocampal and supramammillo-septal glutamatergic/aspartatergic projections in the rat: A combined [3H]D-aspartate autoradiographic and immunohistochemical study. Neuroscience, 2000; 97: 657–669
Kocsis B.: The effect of descending theta rhythmic input from the septohippocampal system on firing in the supramammillary nucleus. Brain Res., 2006; 1086: 92–97
Kocsis B., Kaminski M.: Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system. Hippocampus, 2006; 16: 531–540
Kocsis B., Vertes R.P.: Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat. J. Neurosci., 1994; 14: 7040–7052
Kocsis B., Vertes R.P.: Phase relations of rhythmic neuronal firing in the supramammillary nucleus and mammillary body to the hippocampal theta activity in urethane anesthetized rats. Hippocampus, 1997; 7: 204–214
Kowalczyk T., Bocian R., Caban B., Konopacki J.: Atropine-sensitive theta rhythm in the posterior hypothalamic area: In vivo and in vitro studies. Hippocampus, 2014; 24: 7–20
Kowalczyk T., Bocian R., Konopacki J.: The generation of theta rhythm in hippocampal formation maintained in vitro. Eur. J. Neurosci., 2013; 37: 679–699
Kowalczyk T., Konopacki J., Bocian R., Caban B.: Theta-related gating cells in hippocampal formation: in vivo and in vitro study. Hippocampus, 2013; 23: 30–39
Kramis R., Vanderwolf C.H., Bland B.H.: Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp. Neurol., 1975; 49: 58–85
Leranth C., Carpi D., Buzsaki G., Kiss J.: The entorhino-septosupramammillary nucleus connection in the rat: Morphological basis of a feedback mechanism regulating hippocampal theta rhythm. Neuroscience, 1999; 88: 701–718
Maglóczky Z., Acsády L., Freund T.F.: Principal cells are the post-synaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus, 1994; 4: 322–334
McNaughton N., Logan B., Panickar K.S., Kirk I.J., Pan W.X., Brown N.T., Heenan A.: Contribution of synapses in the medial supramammillary nucleus to the frequency of hippocampal theta rhythm in freely moving rats. Hippocampus, 1995; 5: 534–545
Nishida M., Pearsall J., Buckner R.L., Walker M.P.: REM sleep, pre-frontal theta, and the consolidation of human emotional memory. Cereb. Cortex, 2009; 19: 1158–1166
Nuñez A., Cervera-Ferri A., Olucha-Bordonau F., Ruiz-Torner A., Teruel V.: Nucleus incertus contribution to hippocampal theta rhythm generation. Eur. J. Neurosci., 2006; 23: 2731–2738
Oddie S.D., Bland B.H., Colom L.V., Vertes R.P.: The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway. Hippocampus, 1994; 4: 454–473
Pan W.X., McNaughton N.: The medial supramammillary nucleus, spatial learning and the frequency of hippocampal theta activity. Brain Res., 1997; 764: 101–108
Pan W.X., McNaughton N.: The supramammillary area: Its organization, functions and relationship to the hippocampus. Prog. Neurobiol., 2004; 74: 127–166
Pan W.X., McNaughton N.: The role of the medial supramammillary nucleus in the control of hippocampal theta activity and behavior in rats. Eur. J. Neurosci., 2002; 16: 1797–1809
Parker S.M., Sinnamon H.M.: Forward locomotion elicited by electrical stimulation in the diencephalon and mesencephalon of the awake rat. Physiol. Behav., 1983; 31: 581–587
Robinson T.E., Whishaw I.Q.: Effects of posterior hypothalamic lesions on voluntary behavior and hippocampal electroencephalograms in the rat. J. Comp. Physiol. Psychol., 1974; 86: 768–786
Shahidi S., Motamedi F., Naghdi N.: Effect of reversible inactivation of the supramammillary nucleus on spatial learning and memory in rats. Brain Res., 2004; 1026: 267–274
Sinnamon H.M.: Locomotor stepping elicited by electrical stimulation of the hypothalamus persists after lesion of descending fibers of passage. Physiol. Behav., 1990; 48: 261–266
Siwek M.E., Müller R., Henseler C., Trog A., Lundt A., Wormuth C., Broich K., Ehninger D., Weiergräber M., Papazoglou A.: Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer’s disease. Neural Plast., 2015; 2015: 781731
Sławińska U., Kasicki S.: Theta-like rhythm in depth EEG activity of hypothalamic areas during spontaneous or electrically induced locomotion in the rat. Brain Res., 1995; 678: 117–126
Thinschmidt J.S., Kinney G.G., Kocsis B.: The supramammillary nucleus: Is it necessary for the mediation of hippocampal theta rhythm? Neuroscience, 1995; 67: 301–312
Trojniar W., Jurkowlaniec E., Orzeł-Gryglewska J., Tokarski J.: The effect of lateral hypothalamic lesions on spontaneous EEG pattern in rats. Acta Neurobiol. Exp., 1987; 47: 27–43
Vertes R.P., Crane A.M., Colom L.V., Bland B.H.: Ascending projections of the posterior nucleus of the hypothalamus: PHA-L analysis in the rat. J. Comp. Neurol., 1995; 359: 90–116
Vertes R.P., Kocsis B.: Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience, 1997; 81: 893–926
Vertes R.P., Martin G.F.: Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J. Comp. Neurol., 1988; 275: 511–541
Woodnorth M.A., Kyd R.J., Logan B.J., Long M.A., McNaughton N.: Multiple hypothalamic sites control the frequency of hippocampal theta rhythm. Hippocampus, 2003; 13: 361–374
Woodnorth M.A., McNaughton N.: Different systems in the posterior hypothalamic nucleus of rats control theta frequency and trigger movement. Behav. Brain Res., 2005; 163: 107–114
Woodnorth M.A., McNaughton N.: Benzodiazepine receptors in the medial-posterior hypothalamus mediate the reduction of hippocampal theta frequency by chlordiazepoxide. Brain Res., 2002; 954: 194–201