Alfonso P., Núñez A., Madoz-Gurpide J., Lombardia L., Sánchez L., Casal J.I.: Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics, 2005; 5: 2602–2611
Arshad N., Cresswell P.: Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J. Biol. Chem., 2018; 293: 9555–9569
Chahed K., Kabbage M., Ehret-Sabatier L., Lemaitre-Guillier C., Remadi S., Hoebeke J., Chouchane L.: Expression of fibrinogen E-fragment and fibrin E-fragment is inhibited in the human infiltrating ductal carcinoma of the breast: The two-dimensional electrophoresis and MALDI-TOF-mass spectrometry analyses. Int. J. Oncol., 2005; 27: 1425–1431
Chang H.H., Lee H., Hu M.K., Tsao P.N., Juan H.F., Huang M.C., Shih Y.Y., Wang B.J., Jeng Y.M., Chang C.L., Huang S.F., Tsay Y.G., Hsieh F.J., Lin K.H., Hsu W.M., et al.: Notch1 expression predicts an unfavorable prognosis and serves as a therapeutic target of patients with neuroblastoma. Clin. Cancer Res., 2010; 16: 4411–4420
Chao M.P., Jaiswal S., Weissman-Tsukamoto R., Alizadeh A.A., Gentles A.J., Volkmer J., Weiskopf K., Willingham S.B., Raveh T., Park C.Y., Majeti R., Weissman I.L.: Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counter-balanced by CD47. Sci. Transl. Med., 2010; 2: 63ra94
Cid N.D., Jeffery E., Rizvi S.M., Stamper E., Peters L.R., Brown W.C., Provoda C., Raghavan M.: Modes of calreticulin recruitment to the major histocompatibility complex class I assembly pathway. J. Biol. Chem., 2010; 285: 4520–4535
Cockram T.O.J., Puigdellívol M., Brown G.C.: Calreticulin and galectin-3 opsonise bacteria for phagocytosis by microglia. Front. Immunol., 2019; 10: 2647
Cordua S., Kjaer L., Skov V., Pallisgaard N., Hasselbalch H.C., Ellervik C.: Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population. Blood, 2019; 134: 469–479
Di Martino S., Crescente G., De Lucia V., Di Paolo M., Marotta G., De Lucia D., Abbadessa A.: The emerging role of calreticulin in cancer cells. World Cancer Res. J., 2017; 4: e926
Du X.L., Hu H., Lin D.C., Xia S.H., Shen X.M., Zhang Y., Luo M.L., Feng Y.B., Cai Y., Xu X., Han Y.L., Zhan Q.M., Wang M.R.: Proteomic profiling of proteins dysregulated in Chinese esophageal squamous cell carcinoma. J. Mol. Med., 2007; 85: 863–875
Eder-Azanza L., Navarro D., Aranaz P., Novo F.J., Cross N.C., Vizmanos J.L.: Bioinformatic analyses of CALR mutations in myeloproliferative neoplasms support a role in signaling. Leukemia, 2014; 28: 2106–2109
Elf S., Abdelfattah N.S., Chen E., Perales-Patón J., Rosen E.A., Ko A., Peisker F., Florescu N., Giannini S., Wolach O., Morgan E.A., Tothova Z., Losman J.A., Schneider R.K., Al-Shahrour F., et al.: Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov., 2016; 6: 368–381
Falchi M., Varricchio L., Martelli F., Marra M., Picconi O., Tafuri A., Girelli G., Uversky V.N., Migliaccio A.R.: The calreticulin control of human stress erythropoiesis is impaired by JAK2V617F in polycythemia vera. Exp. Hematol., 2017; 50: 53–76
Fucikova J., Becht E., Iribarren K., Goc J., Remark R., Damotte D., Alifano M., Devi P., Biton J., Germain C., Lupo A., Fridman W.H., Dieu-Nosjean M.C., Kroemer G., Sautès-Fridman C., et al.: Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res., 2016; 76: 1746–1756
Fucikova J., Moserova I., Urbanova L., Bezu L., Kepp O., Cremer I., Salek C., Strnad P., Kroemer G., Galluzzi L., Spisek R.: Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front. Immunol., 2015; 6: 402
Fucikova J., Truxova I., Hensler M., Becht E., Kasikova L., Moserova I., Vosahlikova S., Klouckova J., Church S.E., Cremer I., Kepp O., Kroemer G., Galluzzi L., Salek C., Spisek R.: Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood, 2016; 128: 3113–3124
Han A., Li C., Zahed T., Wong M., Smith I., Hoedel K., Green D., Boiko A.D.: Calreticulin is a critical cell survival factor in malignant neoplasms. PLoS Biol., 2019; 17: e3000402
Hellman K., Alaiya A.A., Schedvins K., Steinberg W., Hellström A.C., Auer G.: Protein expression patterns in primary carcinoma of the vagina. Br. J. Cancer, 2004; 91: 319–326
Hsu W.M., Hsieh F.J., Jeng Y.M., Kuo M.L., Chen C.N., Lai D.M., Hsieh L.J., Wang B.T., Tsao P.N., Lee H., Lin M.T., Lai H.S., Chen W.J.: Calreticulin expression in neuroblastoma - a novel independent prognostic factor. Ann. Oncol., 2005; 16: 314–321
Jo S.H., Choi J.A., Lim Y.J., Lee J., Cho S.N., Oh S.M., Go D., Kim S.H., Song C.H.: Calreticulin modulates the intracellular survival of mycobacteria by regulating ER-stress-mediated apoptosis. Onco-target, 2017; 8: 58686–58698
Kageyama S., Isono T., Matsuda S., Ushio Y., Satomura S., Terai A., Arai Y., Kawakita M., Okada Y., Yoshiki T.: Urinary calreticulin in the diagnosis of bladder urothelial carcinoma. Int. J. Urol., 2009; 16: 481–486
Kasikova L., Hensler M., Truxova I., Skapa P., Laco J., Belicova L., Praznovec I., Vosahlikova S., Halaska M.J., Brtnicky T., Rob L., Presl J., Kostun J., Cremer I., Ryska A., et al.: Calreticulin exposure correlates with robust adaptive antitumor immunity and favorable prognosis in ovarian carcinoma patients. J. Immunother. Cancer, 2019; 7: 312
Klampfl T., Gisslinger H., Harutyunyan A.S., Nivarthi H., Rumi E., Milosevic J.D., Them N.C., Berg T., Gisslinger B., Pietra D., Chen D., Vladimer G.I., Bagienski K., Milanesi C., Casetti I.C., et al.: Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med., 2013; 369: 2379–2390
Liu P., Zhao L., Loos F., Marty C., Xie W., Martins I., Lachkar S., Qu B., Waeckel-Énée E., Plo I., Vainchenker W., Perez F., Rodriguez D., López-Otin C., van Endert P., et al.: Immunosuppression by mutated calreticulin released from malignant cells. Mol. Cell, 2020; 77: 748–760.e9
Lwin Z.M., Guo C., Salim A., Yip G.W., Chew F.T., Nan J., Thike A.A., Tan P.H., Bay B.H.: Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod. Pathol., 2010; 23: 1559–1566
Margolin E., Oh Y.J., Verbeek M., Naude J., Ponndorf D., Mesh-cheriakova Y.A., Peyret H., van Diepen M.T., Chapman R., Meyers A.E., Lomonossoff G.P., Matoba N., Williamson A.L., Rybicki E.P.: Co-expression of human calreticulin significantly improves the production of HIV gp140 and other viral glycoproteins in plants. Plant Biotechnol. J., 2020; 18: 2109–2117
Marty C., Pecquet C., Nivarthi H., El-Khoury M., Chachoua I., Tulliez M., Villeval J.L., Raslova H., Kralovics R., Constantinescu S.N., Plo I., Vainchenker W.: Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood, 2016; 127: 1317–1324
Mesaeli N., Nakamura K., Zvaritch E., Dickie P., Dziak E., Krause K.H., Opas M., MacLennan D.H., Michalak M.: Calreticulin is essential for cardiac development. J. Cell Biol., 1999; 144: 857–868
Michalak M., Groenendyk J., Szabo E., Gold L.I., Opas M.: Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J., 2009; 417: 651–666
Nakamura K., Zuppini A., Arnaudeau S., Lynch J., Ahsan I., Krause R., Papp S., De Smedt H., Parys J.B., Muller-Esterl W., Lew D.P., Krause K.H., Demaurex N., Opas M., Michalak M.: Functional specialization of calreticulin domains. J. Cell Biol., 2001; 154: 961–972
Nangalia J., Massie C.E., Baxter E.J., Nice F.L., Gundem G., Wedge D.C., Avezov E., Li J., Kollmann K., Kent D.G., Aziz A., Godfrey A.L., Hinton J., Martincorena I., Van Loo P., et al.: Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med., 2013; 369: 2391–2405
Papp S., Fadel M.P., Kim H., McCulloch C.A., Opas M.: Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-Src activity. J. Biol. Chem., 2007; 282: 16585–16598
Peng R.Q., Chen Y.B., Ding Y., Zhang R., Zhang X., Yu X.J., Zhou Z.W., Zeng Y.X., Zhang X.S.: Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. World J. Gastroenterol., 2010; 16: 2428–2434
Pietra D., Rumi E., Ferretti V.V., Di Buduo C.A., Milanesi C., Cavalloni C., Sant’Antonio E., Abbonante V., Moccia F., Casetti I.C., Bellini M., Renna M.C., Roncoroni E., Fugazza E., Astori C., et al.: Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia, 2016; 30: 431–438
Saito Y., Ihara Y., Leach M.R., Cohen-Doyle M.F., Williams D.B.: Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J., 1999; 18: 6718–6729
Schcolnik-Cabrera A., Oldak B., Juárez M., Cruz-Rivera M., Flisser A., Mendlovic F.: Calreticulin in phagocytosis and cancer: Opposite roles in immune response outcomes. Apoptosis, 2019; 24: 245–255
Sheng W., Chen C., Dong M., Zhou J., Liu Q., Dong Q., Li F.: Over-expression of calreticulin contributes to the development and progression of pancreatic cancer. J. Cell. Physiol., 2014; 229: 887–897
Shide K., Kameda T., Yamaji T., Sekine M., Inada N., Kamiunten A., Akizuki K., Nakamura K., Hidaka T., Kubuki Y., Shimoda H., Kitanaka A., Honda A., Sawaguchi A., Abe H., et al.: Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia, 2017; 31: 1136–1144
Shivarov V., Ivanova M., Tiu R.V.: Mutated calreticulin retains structurally disordered C terminus that cannot bind Ca2+: Some mechanistic and therapeutic implications. Blood Cancer J., 2014; 4: e185
Szuber N., Lamontagne B., Busque L.: Novel germline mutations in the calreticulin gene: Implications for the diagnosis of myeloproliferative neoplasms. J. Clin. Pathol., 2016; 69: 1033–1036
Tefferi A., Wassie E.A., Guglielmelli P., Gangat N., Belachew A.A., Lasho T.L., Finke C., Ketterling R.P., Hanson C.A., Pardanani A., Wolanskyj A.P., Maffioli M., Casalone R., Pacilli A., Vannucchi A.M., et al.: Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: A collaborative study of 1027 patients. Am. J. Hematol., 2014; 89: E121–E124
Truxova I., Kasikova L., Salek C., Hensler M., Lysak D., Holicek P., Bilkova P., Holubova M., Chen X., Mikyskova R., Reinis M., Kovar M., Tomalova B., Kline J.P., Galluzzi L., et al.: Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients. Haematologica, 2020; 105: 1868–1878
Varricchio L., Falchi M., Dall’Ora M., De Benedittis C., Ruggeri A., Uversky V.N., Migliaccio A.R.: Calreticulin: Challenges posed by the intrinsically disordered nature of calreticulin to the study of its function. Front. Cell Dev. Biol., 2017; 5: 96
Wijeyesakere S.J., Bedi S.K., Huynh D., Raghavan M.: The C-terminal acidic region of calreticulin mediates phosphatidylserine binding and apoptotic cell phagocytosis. J. Immunol., 2016; 196: 3896–3909
Wijeyesakere S.J., Gagnon J.K., Arora K., Brooks C.L.3rd, Raghavan M.: Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP. Proc. Natl. Acad. Sci. USA, 2015; 112: E5608–E5617
Yue X., Wang H., Zhao F., Liu S., Wu J., Ren W., Zhu Y.: Hepatitis B virus-induced calreticulin protein is involved in IFN resistance. J. Immunol., 2012; 189: 279–286