Have a personal or library account? Click to login
Dysregulacja poziomu metylotransferaz argininy w patogenezie chorób nowotworowych Cover

Dysregulacja poziomu metylotransferaz argininy w patogenezie chorób nowotworowych

Open Access
|Apr 2021

References

  1. Alam H., Gu B., Lee M.G.: Histone methylation modifiers in cellular signaling pathways. Cell. Mol. Life Sci., 2015; 72: 4577–4592
  2. Amano Y., Matsubara D., Yoshimoto T., Tamura T., Nishino H., Mori Y., Niki T.: Expression of protein arginine methyltransferase-5 in oral squamous cell carcinoma and its significance in epithelial-to-mesenchymal transition. Pathol. Int., 2018; 68: 359–366
  3. Baldwin R.M., Bejide M., Trinkle-Mulcahy L., Côté J.: Identification of the PRMT1v1 and PRMT1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells. Proteomics, 2015; 15: 2187–2197
  4. Baldwin R.M., Haghandish N., Daneshmand M., Amin S., Paris G., Falls T.J., Bell J.C., Islam S., Côté J.: Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget, 2015; 6: 3013–3032
  5. Banasavadi-Siddegowda Y.K., Welker A.M., An M., Yang X., Zhou W., Shi G., Imitola J., Li C., Hsu S., Wang J., Phelps M., Zhang J., Beattie C.E., Baiocchi R., Kaur B.: PRMT5 as a druggable target for glioblastoma therapy. Neuro Oncol., 2018; 20: 753–763
  6. Bedford M.T.: The family of protein arginine methyltransferases. The Enzymes, 2006; 24: 31–50
  7. Behera A.K., Kumar M., Shanmugam M.K., Bhattacharya A., Rao V.J., Bhat A., Vasudevan M., Gopinath K.S., Mohiyuddin A., Chatteriee A., Sethi G., Kundu T.K.: Functional interplay between YY1 and CARM1 promotes oral carcinogenesis. Oncotarget, 2019; 10: 3709–3724
  8. Brehmer D., Wu T., Mannens G., Beke L., Vinken P., Gaffney D., Sun W., Pande V., Thuring J.W., Millar H., Poggesi I., Somers I., Boeckx A., Parade M., van Heerde E. i wsp.: Abstract DDT02-04: A novel PRMT5 inhibitor with potent in vitro and in vivo activity in preclinical lung cancer models. Cancer Res., 2017; 77: DDT02–04
  9. Carlson S.M., Gozani O.: Emerging technologies to map the protein methylome. J. Mol. Biol. 2014; 426: 3350–3362
  10. Carr S.M., Roworth A.P., Chan C., La Thangue N.B.: Post-translational control of transcription factors: Methylation ranks highly. FEBS J., 2015; 282: 4450–4465
  11. Castellano S., Milite C., Ragno R., Simeoni S., Mai A., Limongeli V., Novellino E., Bauer I., Brosh G., Spannhoff A., Cheng D., Bedford M.T., Sbardella G.: Design, synthesis and biological evaluation of carboxy analogues of argininę methyltransferase inhibitor 1 (AMI-1). ChemMedChem., 2010; 5: 398–414
  12. Cheng D., Yadav N., King R.W., Swanson M.S., Weinstein E.J., Bedford M.T.: Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem., 2004; 279: 23892–23899
  13. Eram M.S., Shen Y., Szewczyk M., Wu H., Senisterra G., Li F., Butler K.V., Kaniskan H.Ü., Speed B.A., Dela Seña C., Dong A., Zeng H., Schapira M., Brown P.J., Arrowsmith C.H. i wsp.: A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem. Biol., 2016; 11: 772–781
  14. Feng Y., Xie N., Wu J., Yang C., Zheng Y.G.: Inhibitory study of protein arginine methyltransferase 1 using a fluorescent approach. Biochem. Biophys. Res. Commun., 2009; 379: 567–572
  15. Fulton M.D., Brown T., Zheng Y.G.: Mechanisms and inhibitors of histone arginine methylation. Chem. Rec., 2018; 18: 1792–1807
  16. Geng P., Zhang Y., Liu X., Zhang N., Liu Y., Liu X., Lin C., Yan X., Li Z., Wang G., Li Y., Tan J., Liu D.X., Huang B., Lu J.: Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. FASEB J., 2017; 31: 2287–2300
  17. Hadjikyriacou A., Yang Y., Espejo A., Bedford M.T., Clarke S.G.: Unique features of human protein arginine methyltransferase 9 (PRMT9) and its substrate RNA splicing factor SF3B2. J. Biol. Chem., 2015; 290: 16723–16743
  18. Haghandish N., Baldwin R.M., Morettin A., Dawit H.T., Adhikary H., Masson J.Y., Mazroui R., Trinkle-Mulcahy L., Côté J.: PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation. Mol. Biol. Cell, 2019; 30: 778–793
  19. Han H.S., Choi D., Choi S., Koo S.H.: Roles of protein arginine methyltransferases in the control of glucose metabolism. Endocrinol. Metab., 2014; 29: 435–440
  20. Hernandez S., Dominko T.: Novel protein arginine methyltransferase 8 isoform is essential for cell proliferation. J. Cell Biochem., 2016; 117: 2056–2066
  21. Hernandez S.J., Dolivo D.M., Dominko T.: PRMT8 demonstrates variant-specific expression in cancer cells and correlates with patient survival in breast, ovarian and gastric cancer. Oncol. Lett., 2017; 13: 1938–1989
  22. Hsu M.C., Pan M.R., Chu P.Y., Tsai Y.L., Tsai C.H., Shan Y.S., Chen L.T., Hung W.C.: Protein arginine methyltransferase 3 enhances chemoresistance in pancreatic cancer by methylating hnRNPA1 to increase ABCG2 expression. Cancers, 2018; 11: 8
  23. Hu G., Wang X., Han Y., Wang P.: Protein arginine methyltransferase 5 promotes bladder cancer growth through inhibiting NF-kB dependent apoptosis. EXCLI J., 2018; 17: 1157–1166
  24. Hu H., Qian K., Ho M.C., Zheng Y.G.: Small molecule inhibitors of protein arginine methyltransferases. Expert Opin. Investig. Drugs, 2016; 25: 335–358
  25. Iderzorig T., Kellen J., Osude C., Singh S., Woodman J.A., Garcia C., Puri N.: Comparison of EMT mediated tyrosine kinase inhibitor resistance in NSCLC. Biochem. Biophys. Res. Commun., 2018; 496: 770–777
  26. Jahan S., Davie J.R.: Protein arginine methyltransferases (PRMTs): Role in chromatin organization. Adv. Biol. Regul., 2015; 57: 173–184
  27. Kaniskan H.Ü., Eram M.S., Liu J., Smil D., Martini M.L., Shen Y., Santhakumar V., Brown P.J., Arrowsmith C.H., Vedadi M., Jin J.: Design and synthesis of selective, small molecule inhibitors od coactivator-associated arginine methyltransferase 1 (CARM1). Med. Chem. Commun., 2016; 7: 1793–1796
  28. Karkhanis V., Hu Y.J., Baiocchi R.A., Imbalzano A.N., Sif S.: Versatility of PRMT5-induced methylation in growth control and development. Trends. Biochem. Sci., 2011; 36: 633–641
  29. Kleinschmidt M.A., de Graaf P., van Teeffeln H.A., Timmers H.T.: Cell cycle regulation by the PRMT6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors. PLoS One, 2012; 7: e41446
  30. Lattouf H., Poulard C., Le Romancer M.: PRMT5 prognostic value in cancer. Oncotarget, 2019; 10: 3151–3153
  31. Leipold A., Heß J., Zaoui K.: Das Epigenoom. Zielstruktur für innovative Therapiekonzepte beim Kopf- und Halskarzinom. HNO, 2015; 63: 786–791
  32. Li M., An W., Xu L., Lin Y., Su L., Liu X.: The arginine methyl transferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer cells. J. Exp. Clin. Cancer Res., 2019; 38: 64
  33. Li S., Cheng D., Zhu B., Yang Q.: The overexpression of CARM1 promotes human osteosarcoma cell proliferation through the pGSK3β/β-catenin/cyclinD1 signaling pathway. Int. J. Biol. Sci., 2017; 13: 976–984
  34. Li X., Wang C., Jiang H., Luo C.: A patent review of arginine methyltransferase inhibitors (2010–2018). Expert Opin. Ther. Pat., 2019; 29: 97–114
  35. Li Y., Zhu R., Wang W., Fu D., Hou J., Ji S., Chen B., Hu Z., Shao X., Yu X., Zhao Q., Zhang B., Du C., Bu Q., Hu C. i wsp.: Arginine methyltransferase 1 in the nucleus accumbens regulates behavioral effects of cocaine. J. Neurosci., 2015; 35: 12890–12902
  36. Lin H., Wang B., Yu J., Wang J., Li Q., Cao B.: Protein arginine methyl transferase 8 gene enhances the colon cancer stem cell (CSC) function by upregulating the pluripotency transcription factor. J. Cancer, 2018; 9: 1394–1402
  37. Litt M., Qiu Y., Huang S.: Histone arginine methylations: Their roles in chromatin dynamics and transcriptional regulation. Biosci. Rep., 2009; 29: 131–141
  38. Mann M., Zou Y., Chen Y., Brann D., Vadlamudi R.: PELP1 oncogenic functions involve alternative splicing via PRMT6. Mol. Oncol., 2014; 8: 389–400
  39. Michalak E.M., Visvader J.E.: Dysregulation of histone methyltransferases in breast cancer – opportunities for new targeted therapies? Mol. Oncol., 2016; 10: 1497–1515
  40. Nakai K., Xia W., Liao H.W., Saito M., Hung M.C., Yamaguchi H.: The role of PRMT1 in EGFR methylation and signaling in MDA-MB-468 triple-negative breast cancer cells. Breast Cancer, 2018; 25: 74–80
  41. Nakakido M., Deng Z., Suzuki T., Dohmae N., Nakamura Y., Hamamoto R.: PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents. Oncotarget, 2015; 6: 30957–30967
  42. Nakayama K., Szewczyk M.M., Dela Sena C., Wu H., Dong A., Zeng H., Li F., de Freitas R.F., Eram M.S., Schapira M., Baba Y., Kunitomo M., Cary D.R., Tawada M., Ohashi A. i wsp.: TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget, 2018; 9: 18480–18493
  43. Obianyo O., Causey C.P., Jones J.E., Thompson P.R.: Activity-based protein profiling of protein arginine methyltransferase 1. ACS Chem. Biol., 2011; 6: 1127–1135
  44. Pawlicka K., Perrigue P., Barciszewski J.: Epigenetyczna kontrola procesów komórkowych. Nauka, 2018; 2: 115–128
  45. Peng C., Wong C.C.: The story of protein arginine methylation: Characterization, regulation, and function. Expert Rev. Proteomics, 2017; 14: 157–170
  46. Poulard C., Corbo L., Le Romancer M.: Protein arginine methylation/demethylation and cancer. Oncotarget, 2016; 7: 67532–67550
  47. Prabhu L., Chen L., Wei H., Demir Ö., Safa A., Zeng L., Amaro R.E., O’Neil B.H., Zhang Z.Y., Lu T.: Development of an AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases. Mol. Biosyst., 2017; 13: 2509–2520
  48. Ran T., Li W., Peng B., Xie B., Lu T., Lu S., Liu W.: Virtual screening with a structure-based pharmacophore model to identify small-molecule inhibitors of CARM1. J. Chem. Inf. Model., 2019; 59: 522–534
  49. Ryu J.W., Kim S.K., Son M.Y., Jeon S.J., Oh J.H., Lim J.H., Cho S., Jung C.R., Hamamoto R., Kim D.S., Cho H.S.: Novel prognostic marker PRMT1 regulates cell growth via downregulation of CDKN1A in HCC. Oncotarget, 2017; 8: 115444–115455
  50. Shailesh H., Zakaria Z.Z., Baiocchi R., Sif S.: Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget, 2018; 9: 36705–36718
  51. Shen Y., Zhong J., Liu J., Liu K., Zhao J., Xu T., Zeng T., Li Z., Chen Y., Ding W., Wen G., Zu X., Cao R.: Protein arginine N-methyltransferase 2 reverses tamoxifen resistance in breast cancer cells through suppression of ER-α36. Oncol. Rep., 2018; 39: 2604–2612
  52. Smith E., Zhou W., Shindiapina P., Sif S., Li C., Baiocchi R.A.: Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin. Ther. Targets, 2018; 22: 527–545
  53. Stopa N., Krebs J.E., Shechter D.: The PRMT5 arginine methyl transferase: Many roles in development, cancer and beyond. Cell Mol. Life. Sci., 2015; 72: 2041–2059
  54. Tewary S.K., Zheng Y.G., Ho M.C.: Protein arginine methyltransferases: Insights into the enzyme structure and mechanism at the atomic level. Cell. Mol. Life Sci., 2019; 76: 2917–2932
  55. Vhuiyan M., Thomas D., Hossen F., Frankel A.: Targeting protein arginine N-methyltransferases with peptide-based inhibitors: Opportunities and challenges. Future Med. Chem., 2013; 5: 2199–2206
  56. Wang S.M., Dowhan D.H., Muscat G.E.: Epigenetic arginine methylation in breast cancer: Emerging therapeutic strategies. J. Mol. Endocrinol., 2019; 62: R223–R237
  57. Wang W.J., Hsu J.M., Wang Y.N., Lee H.H., Yamaguchi H., Liao H.W., Hung M.C.: An essential role of PRMT1-mediated EGFR methylation in EGFR activation by ribonuclease 5. Am. J. Cancer Res., 2019; 9: 180–185
  58. Wang Y.P., Zhou W., Wang J., Hung X., Zuo Y., Wang T.S., Gao X., Xu Y.Y., Zou S.W., Liu Y.B., Cheng J.K., Lei Q.Y.: Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol. Cell, 2016; 64: 673–687
  59. Webb L.M., Amici S.A., Jablonski K.A., Savardekar H., Panfil A.R., Li L., Zhou W., Peine K., Karkhanis V., Bachelder E.M., Ainslie K.M., Green P.L., Li C., Baiocchi R.A., Gueraude-Arellano M.: PRMT5-selective inhibitors suppress inflammatory T cell responses and experimental autoimmune encephalomyelitis. J. Immunol., 2017; 198:1439–1451
  60. Ye F., Zhang W., Ye F., Zhang W., Ye X., Jin J., Lv Z., Luo C.: Identification of selective, cell active inhibitors of protein arginine methyltransferase 5 through structure-based virtual screening and biological assays. J. Chem. Inf. Model., 2018; 58: 1066–1073
  61. Ye Y., Zhang B., Mao R., Zhang C., Wang Y., Xing J., Liu Y.C., Luo X., Ding H., Yang Y., Zhou B., Jiang H., Chen K., Luo C., Zheng M.: Discovery and optimization of selective inhibitors of protein arginine methyltransferase 5 by docking-based virtual screening. Org. Biomol. Chem., 2017; 15: 3648–3661
  62. Yost J.M., Korboukh I., Liu F., Gao C., Jin J.: Targets in epigenetics: Inhibiting the methyl writers of the histone code. Curr. Chem. Genomics, 2011; 5: 72–84
  63. Zhang B., Chen X., Ge S., Peng C., Zhang S., Chen X., Liu T., Zhang W.: Arginine methyltransferase inhibitor-1 inhibits sarcoma viability in vitro and in vivo. Oncol. Lett., 2018; 16: 2161–2166
  64. Zhang B., Zhang S., Zhu L., Chen X., Zhao Y., Chao L., Zhou J., Wang X., Zhang X., Ma N.: Arginine methyltransferase inhibitor 1 inhibits gastric cancer by downregulating eIF4E and targeting PRMT5. Toxicol. Appl. Pharmacol., 2017; 336: 1–7
  65. Zhao X., Zhou D., Liu Y., Li C., Zhao X., Li Y., Li W.: Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway. Mol. Med. Rep., 2018; 17: 147–157
  66. Zhao Y., Lu Q., Li C., Wang X., Jiang L., Huang L., Wang C., Chen H.: PRMT1 regulates the tumour-initiating properties of esophageal squamous cell carcinoma through histone H4 arginine methylation coupled with transcriptional activation. Cell Death. Dis., 2019; 10: 359
  67. Zhong J., Cao R.X., Hong T., Yang J., Zu X.Y., Xiao X.H., Liu J.H., Wen G.B.: Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer. Gene, 2011; 487: 1–9
  68. Zhong J., Cao R.X., Liu J.H., Liu Y.B., Wang J., Liu L.P., Chen Y.J., Yang J., Zhang Q.H., Wu Y., Ding W.J., Hong T., Xiao X.H., Zu X.Y., Wen G.B.: Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein. Oncogene, 2014; 33: 5546–5558
  69. Zhong J., Chen Y.J., Chen L., Shen Y.Y., Zhang Q.H., Yang J., Cao R.X., Zu X.Y., Wen G.B.: PRMT2β, a C-terminal splice variant of PRMT2β, inhibits the growth of breast cancer cells. Oncol. Rep., 2017, 38: 1303–1311
  70. Zhong X.Y., Yuan X.M., Xu Y.Y., Yin M., Yan W.W., Zou S.W., Wei L.M., Lu H.J., Wang Y.P., Lei Q.Y.: CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell. Rep., 2018; 24: 3207–3223
  71. Zhu K., Jiang C., Tao H., Liu J., Zhang H., Luo C.: Identification of a novel selective small-molecule inhibitor of protein arginine methyltransferase 5 (PRMT5) by virtual screening, resynthesis and biological evaluations. Bioorg. Med. Chem. Lett., 2018; 28: 1476–1483
Language: English
Page range: 272 - 282
Submitted on: Jan 8, 2020
Accepted on: Sep 11, 2020
Published on: Apr 27, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Joanna Janisiak, Patrycja Kopytko, Maciej Tarnowski, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.