Have a personal or library account? Click to login
Nanocząstki o wysokiej zawartości boru jako potencjalne nośniki w terapii borowo-neutronowej* Cover

Nanocząstki o wysokiej zawartości boru jako potencjalne nośniki w terapii borowo-neutronowej*

Open Access
|Feb 2021

References

  1. Al-Madhoun A.S., Johnsamuel J., Barth R.F., Tjarks W., Eriksson S.: Evaluation of human thymidine kinase 1 substrates as new candidates for boron neutron capture therapy. Cancer Res., 2004; 64: 6280–6286
  2. Archambeau J.O.: The effect of increasing exposures of the 10B(n,α)7Li reaction on the skin of man. Radiology, 1970; 94: 178–187
  3. Barth R.F., Coderre J.A., Vicente M.G., Blue T.E.: Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer. Res., 2005; 11: 3987–4002
  4. Barth R.F., Kabalka G.W., Yang W., Huo T., Nakkula R.J., Shaikh A.L., Haider S.A., Chandra S.: Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas. Appl. Radiat. Isot., 2014; 88: 38–42
  5. Barth R.F., Mi P., Yang W.: Boron delivery agents for neutron capture therapy of cancer. Cancer Commun., 2018; 38: 35
  6. Barth R.F., Yang W., Nakkula R.J., Byun Y., Tjarks W., Wu L.C., Binns P.J., Riley K.J.: Evaluation of TK1 targeting carboranyl thymidine analogs as potential delivery agents for neutron capture therapy of brain tumors. Appl. Radiat. Isot., 2015; 106: 251–255
  7. Barth R.F., Yang W., Rotaru J.H., Moeschberger M.L., Joel D.D., Nawrocky M.M., Goodman J.H., Soloway A.H..: Boron neutron capture therapy of brain tumors: Enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood–brain barrier disruption. Cancer Res., 1997; 57: 1129–1136
  8. Bertrand N., Wu J., Xu X., Kamaly N., Farokhzad O.C.: Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014; 66: 2–25
  9. Bhimanapati G.R., Glavin N.R. Robinson J.A.: 2D boron nitride: Synthesis and applications. Semicond. Semimet., 2016; 95: 101–147
  10. Bortolussi S., Bakeine J.G., Ballarini F., Bruschi P., Gadan M. A., Protti N., Stella S., Clerici A., Ferrari C., Cansolino L., Zonta C., Zonta A., Nano R., Altieri S.: Boron uptake measurements in a rat model for Boron Neutron Capture Therapy of lung tumours. Appl. Radiat. Isot., 2011; 69: 394–398
  11. Capuani S., Gili T., Bozzali M., Russo S., Porcari P., Cametti C., Muolo M., D’Amore E., Maraviglia B., Lazzarino G., Pastore F.S.: Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading. Appl. Radiat. Isot., 2009; 67: S34–S36
  12. Chen X., Wu P., Rousseas M., Okawa D., Gartner Z., Zettl A., Bertozzi C.R.: Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc., 2009; 131: 890–891
  13. Ciofani G., Danti S., D’Alessandro D., Moscato S., Menciassi A.: Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay. Biochem. Biophys. Res. Commun., 2010; 394: 405–411
  14. Ciofani G., Danti S., Genchi G.G., Mazzolai B., Mattoli V.: Boron nitride nanotubes: Biocompatibility and potential spill-over in nanomedicine. Small., 2013; 9: 1672–1685
  15. Ciofani G., Raffa V., Menciassi., Cuschieri A.: Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: Confirmation of their potential for biomedical applications. Biotechnol. Bioeng., 2008; 101: 850–858
  16. Coderre J.A., Glass J.D., Fairchild R.G., Micca P.L., Fand I., Joel D.D.: Selective delivery of boron by the melanin precursor analogue p-boronophenylalanine to tumors other than melanoma. Cancer Res., 1990; 50: 138–141
  17. Cui D., Tian F., Ozkan C.S., Wang M., Gao H.: Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett., 2005; 155: 73–85
  18. Dahlström M., Capala J., Lindström P., Wasteson Å., Lindström A.: Accumulation of boron in human malignant glioma cells in vitro is cell type dependent. J. Neuro-Oncol., 2004; 68: 199–205
  19. Dobrzyński L.: Spowalnianie neutronów w moderatorze. W: Podstawy Fizyki Reaktorów Jądrowych, red.: L. Dobrzyński. Świerk 2013, 60–61
  20. Duong N.M., Glushkov E., Chernev A., Navikas V., Comtet J., Nguyen M.A., Toth M., Radenovic A., Tran T.T., Aharonovich I.: Facile production of hexagonal boron nitride nanoparticles by cryogenic exfoliation. Nano. Lett., 2019: 19: 5417–5422
  21. Feng B., Tomizawa K., Michiue H., Miyatake S., Han X.J., Fujimura A., Seno M., Kirihata M., Matsui H.: Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials, 2009; 30: 1746–1755
  22. Ferreira T.H., Miranda M.C., Rocha Z., Leal A.S., Gomes D.A., Sousa E.M.: An assessment of the potential use of BNNTs for Boron Neutron Capture Therapy. Nanomaterials, 2017; 7: 82
  23. Gao Z., Horiguchi Y., Nakai K., Matsumura A., Suzuki M., Ono K., Nagasaki Y:. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials, 2016; 104: 201–212
  24. Gonzalez-Ortiz D., Salameh C., Bechelany M., Miele P.: Nanostructured boron nitride – based materials: Synthesis and applications. Mater. Today Adv., 2020; 8: 100107
  25. Goodman J.H., Yang W., Barth R.F., Gao Z., Boesel C.P., Staubus A.E., Gupta N., Gahbauer R.A., Adams D.M., Gibson C.R., Ferketich A.K., Moeschberger M.L., Soloway A.H., Carpenter D.E., Albertson B.J. i wsp.: Boron neutron capture therapy of brain tumors: Biodistribution, pharmacokinetics, and radiation dosimetry sodium borocaptate in patients with gliomas. Neurosurgery, 2000; 47: 608–621
  26. Hatanaka H., Nakagawa Y.: Clinical results of long-surviving brain tumor patients who underwent boron neutron capture therapy. Int. J. Radiat. Oncol. Biol. Phys., 1994; 28: 1061–1066
  27. Hiratsuka J., Kamitani N., Tanaka R., Tokiya R., Yoden E., Sakurai Y., Suzuki M.: Long-term outcome of cutaneous melanoma patients treated with boron neutron capture therapy (BNCT). J. Radiat. Res., 2020; 61: 945–951
  28. Horváth L., Magrez A., Golberg D., Zhi C., Bando Y., Smajda R., Horváth E., Forró L., Schwaller B.: In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano, 2011; 5: 3800–3810
  29. Ichikawa H., Taniguchi E., Fujimoto T., Fukumori Y.: Biodistribution of BPA and BSH after single, repeated and simultaneous administrations for neutron-capture therapy of cancer. Appl. Radiat. Isot., 2009; 67: S111–S114
  30. Ishikawa Y., Shimizu Y., Sasaki T., Koshizaki N.: Boron carbide spherical particles encapsulated in graphite prepared by pulsed laser irradiation of boron in liquid medium. Appl. Phys. Lett., 2007; 91: 161110
  31. Itoh T., Tamura K., Ueda H., Tanaka T., Sato K., Kuroda R., Aoki S.: Design and synthesis of boron containing monosaccharides by the hydroboration of D-glucal for use in boron neutron capture therapy (BNCT). Bioorg. Med. Chem., 2018; 26: 5922–5933
  32. Iwagami T., Ishikawa Y., Koshizaki N., Yamamoto N., Tanaka H., Masunaga S., Sakurai Y., Kato I., Iwai S., Suzuki M., Yura Y.: Boron carbide particle as a boron compound for Boron Neutron Capture Therapy. J. Nucl. Med. Radiat. Ther., 2014; 5: 2
  33. Kabalka G.W., Shaikh A.L., Barth R.F., Huo T., Yang W., Gordnier P.M., Chandra S.: Boronated unnatural cyclic amino acids as potential delivery agents for neutron capture therapy. Appl. Radiat. Isot., 2011; 69: 1778–1781
  34. Kabalka G.W., Yao M.L., Marepally S.R., Chandra S.: Biological evaluation of boronated unnatural amino acids as new boron carriers. Appl. Radiat. Isot., 2009; 67: S374–S379
  35. Kageji T., Nagahiro S., Mizobuchi Y., Matsuzaki K., Nakagawa Y., Kumada H.: Boron neutron capture therapy (BNCT) for newly-diagnosed glioblastoma: Comparison of clinical results obtained with BNCT and conventional treatment. J. Med. Invest., 2014; 61: 254–263
  36. Kato I., Fujita Y., Maruhashi A., Kumada H., Ohmae M., Kirihata M., Imahori Y., Suzuki M., Sakrai Y., Sumi T., Iwai S., Nakazawa M., Murata I., Miyamaru H., Ono K.: Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies. Appl. Radiat. Isot., 2009; 67: S37–S42
  37. Kato T., Hirose K., Tanaka H., Mitsumoto T., Motoyanagi T., Arai K., Harada T., Takeuchi A., Kato R., Yajima S., Takai Y.: Design and construction of an accelerator-based boron neutron capture therapy (AB-BNCT) facility with multiple treatment rooms at the Southern Tohoku BNCT Research Center. Appl. Radiat. Isot., 2020; 156: 108961
  38. Kaur M., Singh P., Singh K., Gaharwar U.S., Meena R., Kumar M., Nakagawa F., Wu S., Suzuki M., Nakamura H., Kumar A.: Boron nitride (10BN) a prospective material for treatment of cancer by boron neutron capture therapy (BNCT). Mater. Lett., 2020; 259: 126832
  39. Kawabata S., Yang W., Barth R.F., Wu G., Huo T., Binns P.J., Riley K.J., Ongayi O., Gottumukkala V., Vicente M.G.: Convection enhanced delivery of carboranylporphyrins for neutron capture therapy of brain tumors. J. Neuro-Oncol., 2011; 103: 175–185
  40. Kimura Y., Ariyoshi Y., Shimahara M., Miyatake S., Kawabata S., Ono K., Suzuki M., Maruhashi A.: Boron neutron capture therapy for recurrent oral cancer and metastasis of cervical lymph node. Appl. Radiat. Isot., 2009; 67: S47–S49
  41. Kiyanagi Y., Sakurai Y., Kumada H., Tanaka H.: Status of accelerator-based BNCT projects worldwide. AIP Conf. Proc., 2019; 2160: 050012
  42. Kullberg E.B., Wei Q., Capala J., Giusti V., Malmström P.U., Gedda L.: EGF-receptor targeted liposomes with boronatedacridine: Growth inhibition of cultured glioma cells after neutron irradiation. Int. J. Radiat. Biol., 2005; 81: 621–629
  43. Kumada H., Naito F., Hasegawa K., Kobayashi H., Kurihara T., Takada K., Onishi T., Sakurai H., Matsumura A., Sakae T.: Development of LINAC-based neutron source for Boron Neutron Capture Therapy in University of Tsukuba. Plasma Fusion Res., 2018; 13: 2406006
  44. Lai C.H., Lin Y.C., Chou F.I., Liang C.F., Lin E.W., Chuang Y.J., Lin C.C.: Design of multivalent galactosyl carborane as a targeting specific agent for potential application to boron neutron capture therapy. Chem. Commun., 2012; 48: 612–614
  45. Lam C.W., James J.T., McCluskey R., Hunter R.L.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci., 2004; 77: 126–134
  46. Lee C.H., Zhang D., Yap Y.K.: Functionalization, dispersion, and cutting of boron nitride nanotubes in water. J. Phys. Chem. C, 2012; 116: 1798–1804
  47. Luderer M.J., de la Puente P., Azab A.K.: Advancements in tumor targeting strategies for Boron Neutron Capture Therapy. Pharm. Res., 2015; 32: 2824–2836
  48. Luderer M.J., Muz B., Alhallak K., Sun J., Wasden K., Guenthner N., de la Puente P., Federico C., Azab A.K.: Thermal sensitive liposomes improve delivery of boronated agents for Boron Neutron Capture Therapy. Pharm. Res., 2019; 36: 144
  49. Masunaga S., Kasaoka S., Maruyama K., Nigg D., Sakurai Y., Nagata K., Suzuki M., Kinashi Y., Maruhashi A., Ono K.: The potential of transferrin-pendant-type polyethyleneglycol liposomes encapsulating decahydrodecaborate-10B (GB-10) as 10B-carriers for boron neutron capture therapy. Int. J. Radiat. Oncol. Biol. Phys., 2006; 66: 1515–1522
  50. Mattson M.P., Haddon R.C., Rao A.M.: Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci., 2000; 14: 175–182
  51. Mi P., Yanagie H., Dewi N., Yen H.C., Liu X., Suzuki M., Sakurai Y., Ono K., Takahashi H., Cabral H., Kataoka K., Nishiyama N.: Block co-polymer boron cluster conjugate for effective boron neutron capture therapy of solid tumors. J. Control. Release, 2017; 254: 1–9
  52. Michiue H., Sakurai Y., Kondo N., Kitamatsu M., Bin F., Nakajima K., Hirota Y., Kawabata S., Nishiki T., Ohmori I., Tomizawa K., Miyatake S., Ono K., Matsui H.: The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials, 2014; 35: 3396–3405
  53. Mirzaei H.R., Sahebkar A., Salehi R., Nahand J.S., Karimi E., Jaafari M.R., Mirzaei H.: Boron neutron capture therapy: Moving toward targeted cancer therapy. J. Cancer Res. Ther., 2016; 12: 520–525
  54. Mishima Y., Honda C., Ichihashi M., Obara H., Hiratsuka J., Fukuda H., Karashima H., Kobayashi T., Kanda K., Yoshino K.: Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet, 1989; 2: 388–389
  55. Miyatake S.I., Kawabata S., Hiramatsu R., Kuroiwa T., Suzuki M., Ono K.: Boron Neutron Capture Therapy of malignant gliomas. Prog. Neurol. Surg., 2018; 32: 48–56
  56. Miyatake S.I., Kawabata S., Kajimoto Y., Aoki A., Yokoyama K., Yamada M., Kuroiwa T., Tsuji M., Imahori Y., Kirihata M., Sakurai Y., Masunaga S.I., Nagata K., Maruhashi A., Ono K.: Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: An efficacy study based on findings on neuroimages. J. Neurosurg., 2005; 103: 1000–1009
  57. Mortensen M.W., Sørensen P.G., Björkdahl O., Jensen M.R., Gundersen H.J., Bjørnholm T.: Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy. Appl. Radiat. Isot., 2006; 64: 315–324
  58. Moss R.L.: Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot., 2014; 88: 2–11
  59. Naito F.: Introduction to accelerators for boron neutron capture therapy. Ther. Radiol. Oncol., 2018; 2: 54
  60. Nakagawa Y., Pooh K., Kobayashi T., Kageji T., Uyama S., Matsumura A., Kumada H.: Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams. J. Neuro-Oncol., 2003; 62: 87–99
  61. Nakamura H., Koganei H., Miyoshi T., Sakurai Y., Ono K., Suzuki M.: Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT. Bioorg. Med. Chem. Lett., 2015; 25: 172–174
  62. Nakamura S., Imamichi S., Masumoto K., Ito M., Wakita A., Okamoto H., Nishioka S., Iijima K., Kobayashi K., Abe Y., Igaki H., Kurita K., Nishio T., Masutani M., Itami J.: Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 2017; 93: 821–831
  63. Nedunchezhian K., Aswath N., Thiruppathy M., Thirugnanamurthy S.: Boron Neutron Capture Therapy – A literature review. J. Clin. Diagn. Res., 2016; 10: ZE01–ZE04
  64. Nemoto H., Cai J., Asao N., Iwamoto S., Yamamoto Y.: Synthesis and biological properties of water-soluble p-boronophenylalanine derivatives. Relationship between water solubility, cytotoxicity, and cellular uptake. J. Med. Chem., 1995; 38: 1673–1678
  65. Petersen M.S., Petersen C.C., Agger R., Sutmuller M., Jensen M.R., Sørensen P.G., Mortensen M.W., Hansen T., Bjørnholm T., Gundersen H.J., Huiskamp R., Hokland M.: Boron nanoparticles inhibit tumour growth by boron neutron capture therapy in the murine B16-OVA model. Anticancer Res., 2008; 28: 571–576
  66. Radomski J., Rećko W.M., Ketling-Szemley M.: Własności azotku boru i metody jego otrzymywania. Wydawnictwa Przemysłu Maszynowego “WEMA”. Warszawa 1980
  67. Ryashentsev D.S., Belenkov E.A.: New BN polymorphs with two-dimensional structure. IOP Conf. Ser.: Mater. Sci. Eng., 2019; 537: 022060
  68. Seki R., Wakisaka Y., Morimoto N., Takashina M., Koizumi M., Toki H., Fukuda M.: Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT). Radiol. Phys. Technol., 2017; 10: 387–408
  69. Şen Ö., Emanet M., Çulha M.: One-step synthesis of hexagonal boron nitrides, their crystallinity and biodegradation. Front. Bioeng. Biotechnol., 2018; 6: 83
  70. Shvedova A.A., Castranova V., Kisin E.R., Schwegler-Berry D., Murray A.R., Gandelsman V.Z., Maynard A., Baron P.: Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A, 2003; 66: 1909–1926
  71. Singh B., Kaur G., Singh P., Singh K. Kumar B., Vij A., Kumar M., Bala R., Meena R., Singh A., Thakur A., Kumar A.: Nanostructured boron nitride with high water dispersibility for Boron Neutron Capture Therapy. Sci. Rep., 2016; 6: 35535
  72. Slatkin D.N.: A history of boron neutron capture therapy of brain tumours. Postulation of a brain radiation dose tolerance limit. Brain, 1991; 114: 1609–1629
  73. Suzuki M.: Boron neutron capture therapy (BNCT): A unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int. J. Clin. Oncol., 2020; 25: 43–50
  74. Suzuki M., Masunaga S.I., Kinashi Y., Takagaki M., Sakurai Y., Kobayashi T., Ono K.: The effects of boron neutron capture therapy on liver tumors and normal hepatocytes in mice. Jpn. J. Cancer Res., 2000; 91: 1058–1064
  75. Tajes M., Ramos-Fernández E., Weng-Jiang X., Bosch-Morató M., Guivernau B., Eraso-Pichot A., Salvador B., Fernàndez-Busquets X., Roquer J., Muñoz F.J.: The blood-brain barrier: Structure, function and therapeutic approaches to cross it. Mol. Membr. Biol., 2014; 31: 152–167
  76. Tsuji T., Yoshitomi H., Ishikawa Y., Koshizaki N., Suzuki M., Usukura J.: A method to selectively internalize submicrometer boron carbide particles into cancer cells using surface transferrin conjugation for developing a new boron neutron capture therapy agent. J. Exp. Nanosci., 2020; 15: 1–11
  77. Türkez H., Arslan M.E., Sönmez E., Geyikoğlu F., Açıkyıldız M., Tatar A.: Microarray assisted toxicological investigations of boron carbide nanoparticles on human primary alveolar epithelial cells. Chem. Biol. Interact., 2019; 300: 131–137
  78. Vos M.J., Turowski B., Zanella F.E., Paquis P., Siefert A., Hideghéty K., Haselsberger K., Grochulla F., Postma T.J., Wittig A., Heimans J.J., Slotman B.J., Vandertop W.P., Sauerwein W.: Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961. Int. J. Radiat. Oncol. Biol. Phys., 2005; 61: 392–399
  79. Warheit D.B., Laurence B.R., Reed K.L., Roach D.H., Reynolds G.A., Webb T.R.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci., 2004; 77: 117–125
  80. Weng Q., Wang B., Wang X., Hanagata N., Li X., Liu D., Wang X., Jiang X., Bando Y., Golberg D.: Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano, 2014; 8: 6123–6130
  81. Wittig A., Sauerwein W.A., Coderre J.A.: Mechanisms of transport of p-borono-phenylalanine through the cell membrane in vitro. Radiat. Res., 2000; 153: 173–180
  82. Wittig A., Stecher-Rasmussen F., Hilger R.A., Rassow J., Mauri P., Sauerwein W.: Sodium mercaptoundecahydro-closo-dodecaborate (BSH), a boron carrier that merits more attention. Appl. Radiat. Isot., 2011; 69: 1760–1764
  83. Wu G., Yang W., Barth R.F., Kawabata S., Swindall M., Bandyopadhyaya A.K., Tjarks W., Khorsandi B., Blue T.E., Ferketich A.K., Yang M., Christoforidis G.A., Sferra T.J., Binns P.J., Riley K.J. i wsp.: Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin. Cancer Res., 2007; 13: 1260–1268
  84. Yanagië H., Tomita T., Kobayashi H., Fujii Y., Takahashi T., Hasumi K., Nariuchi H., Sekiguchi M.: Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model. Br. J. Cancer, 1991; 63: 522–526
  85. Yang W., Barth R.F., Wu G., Tjarks W., Binns P., Riley K.: Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl. Radiat. Isot., 2009; 67: S328–S331
  86. Yang W., Wu G., Barth R.F., Swindall M.R., Bandyopadhyaya A.K., Tjarks W., Tordoff K., Moeschberger M., Sferra T.J., Binns P.J., Riley K.J., Ciesielski M.J., Fenstermaker R.A., Wikstrand C.J.: Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Clin. Cancer Res., 2008; 14: 883–891
  87. Yinghuai Z., Peng A.T., Carpenter K., Maguire J.A., Hosmane N.S., Takagaki M.: Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to Boron Neutron Capture Therapy drug delivery. J. Am. Chem. Soc., 2005; 127: 9875–9880
  88. Yokoyama K., Miyatake S., Kajimoto Y., Kawabata S., Doi A., Yoshida T., Asano T., Kirihata M., Ono K., Kuroiwa T.: Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT. J. Neuro-Oncol., 2006; 78: 227–232
  89. Zhuo J.C., Cai J., Soloway A.H., Barth R.F., Adams D.M., Ji W., Tjarks W.: Synthesis and biological evaluation of boron-containing polyamines as potential agents for neutron capture therapy of brain tumors. J. Med. Chem., 1999; 42: 1282–1292
Language: English
Page range: 122 - 132
Submitted on: Nov 12, 2020
Accepted on: Dec 29, 2020
Published on: Feb 26, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Anna Wróblewska, Bożena Szermer-Olearnik, Elżbieta Pajtasz-Piasecka, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.