Have a personal or library account? Click to login
Characteristics of matrix metalloproteinases and their role in embryogenesis of the mammalian respiratory system Cover

Characteristics of matrix metalloproteinases and their role in embryogenesis of the mammalian respiratory system

Open Access
|Jan 2021

References

  1. Ala-aho R., Kähäri V.M.: Collagenases in cancer. Biochimie, 2005; 87: 273–286
  2. Andreeva A.V., Kutuzov M.A., Voyno-Yasenetskaya T.A.: Regulation of surfactant secretion in alveolar type II cells. Am. J. Physiol. Lung. Cell. Mol. Physiol., 2007; 293: L259–L271
  3. Anteby E.Y., Greenfield C., Natanson-Yaron S., Goldman-Wohl D., Hamani Y., Khudyak V., Ariel I., Yagel S.: Vascular endothelial growth factor, epidermal growth factor and fibroblast growth factor-4 and -10 stimulate trophoblast plasminogen activator system and metalloproteinase-9. Mol. Hum. Reprod., 2004; 10: 229–235
  4. Arza B., De Maeyer M., Félez J., Collen D., Lijnen H.R.: Critical role of glutamic acid 202 in the enzymatic activity of stromelysin-1 (MMP-3). Eur. J. Biochem., 2001; 268: 826–831
  5. Atkinson J.J., Holmbeck K., Yamada S., Birkedal-Hansen H., Parks W.C., Senior R.M.: Membrane-type 1 matrix metalloproteinase is required for normal alveolar development. Develop. Dyn., 2005; 232: 1079–1090
  6. Batra J., Robinson J., Soares A.S., Fields A.P., Radisky D.C., Radisky E.S.: Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: Binding studies and crystal structure. J. Biol. Chem., 2012; 287: 15935–15946
  7. Batra J., Soares A.S., Mehner C., Radisky E.S.: Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes. PLoS One, 2013; 8: e75836
  8. Bauvois B.: New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta, 2012; 1825: 29–36
  9. Belokhvostova D., Berzanskyte I., Cujba A.M., Jowett G., Marshall L., Prueller J., Watt F.M.: Homeostasis, regeneration and tumour formation in the mammalian epidermis. Int. J. Dev. Biol., 2018; 62: 571–582
  10. Bland R.D., Nielson D.W.: Developmental changes in lung epithelial ion transport and liquid movement. Annu. Rev. Physiol., 1992; 54: 373–394
  11. Bolon I., Devouassoux M., Robert C., Moro D., Brambilla C., Brambilla E.: Expression of urokinase-type plasminogen activator, stromelysin-1, stromelysin-3 and matrilysin genes in lung carcinomas. Am. J. Pathol., 1997; 150: 1619–1629
  12. Boucherat O., Bourbon J.R., Barlier-Mur A.M., Chailley-Heu B., D’Ortho M.P., Delacourt C.: Differential expression of matrix metalloproteinases and inhibitors in developing rat lung mesenchymal and epithelial cells. Pediatr. Res., 2007; 62: 20–25
  13. Brauer P.R.: MMPs: Role in cardiovascular development and disease. Front. Biosci., 2006; 11: 447–478
  14. Brew K., Dinakarpandian D., Nagase H.: Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochim. Biophys. Acta, 2000; 1477: 267–283
  15. Brew K., Nagase H.: The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta, 2010; 1803: 55–71
  16. Cauwe B., Opdenakker G.: Intracellular substrate cleavage: A novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol., 2010; 45: 351–423
  17. Chang Z.K., Meng F.G., Zhang Z.Q., Mao G.P., Huang Z.Y., Liao W.M., He A.S.: MicroRNA-193b-3p regulates matrix metalloproteinase 19 expression in interleukin-1β-induced human chondrocytes. J. Cell. Biochem., 2018; 119: 4775–4782
  18. Chetty C., Lakka S.S., Bhoopathi P., Kunigal S., Geiss R., Rao J.S.: Tissue inhibitor of matrix metalloproteinase 3 supresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer. Cancer. Res., 2008; 68: 4736–4745
  19. Crowther C.A., Alfirevic Z., Haslam R.R.: Prenatal thyrotropin-releasing hormone for preterm birth. Cochrane. Database. Syst. Rev., 2000; 2000: CD000019
  20. deMello D.E., Sawyer D., Galvin N., Reid L.M.: Early fetal development of lung vasculature. Am. J. Respir. Cell. Mol. Biol. 1997; 16: 568–581
  21. Deryugina E.I., Quigley J.P.: Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev., 2006; 25: 9–34
  22. Elumalai G., Anbazhagan L.: “Laryngomalacia” embryological basis and its clinical significance. Elixir Embryology, 2016; 100: 43420–43424
  23. English W.R., Ireland-Zecchini H., Baker A.H., Littlewood T.D., Bennett M.R., Murphy G.: Tissue inhibitor of metalloproteinase-3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells. PLoS One, 2018; 13: e0195116
  24. Erickson H.P.: Tenascin-C, tenascin-R and tenascin-X: A family of talented proteins in search of functions. Curr. Opin. Cell Biol., 1993; 5: 869–876
  25. Fic P., Zakrocka I., Kurzepa J., Stepulak A.: Matrix metalloproteinases and atherosclerosis. Postępy Hig. Med. Dośw., 2011; 65: 16–27
  26. Fink K., Boratyński J.: The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis. Postępy Hig. Med. Dośw., 2012; 66: 609–628
  27. Forhead A.J., Fowden A.L.: Thyroid hormones in fetal growth and prepartum maturation. J. Endocrinol., 2014; 221: R87–R103
  28. Franco C., Patricia H.R., Timo S., Claudia B., Marcela H.: Matrix metalloproteinases as regulators of periodontal inflammation. Int. J. Mol. Sci., 2017; 18: 440
  29. Fujimoto N., Zhang J., Iwata K., Shinya T., Okada Y., Hayakawa T.: A one-step sandwich enzyme immunoassay for tissue inhibitor metalloproteinases-2 using monoclonal antibodies. Clin. Chim. Acta, 1993; 220: 31–45
  30. Fukuda Y., Ferrans V.J., Crystal R.G.: The development of alveolar septa in fetal sheep lung. An ultrastructural and immunohistochemical study. Am. J. Anat., 1983; 167: 405–439
  31. Fukuda Y., Ishizaki M., Okada Y., Seiki M., Yamanaka N.: Matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in fetal rabbit lung. Am. J. Physiol. Lung. Cell. Mol. Physiol., 2000; 279: L555–L561
  32. Galis Z.S., Khatri J.J.: Matrix metalloproteinases in vascular remodeling and atherosclerosis: The good, the bad, and the ugly. Circ. Res., 2002; 90: 251–262
  33. Ganser G.L., Stricklin G.P., Matrisian L.M.: EGF and TGFα influence in vitro lung development by the induction of matrix-degrading metalloproteinases. Int. J. Dev. Biol., 1991; 35: 453–461
  34. Gasson J.C., Golde D.W., Kaufman S.E., Westbrook C.A., Hewick R.M., Kaufman R.J., Wong G.G., Temple P.A., Leary A.C., Brown E.L., Orr E.C., Clark S.C.: Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature, 1985; 315: 768–771
  35. Gill S.E., Pape M.C., Khokha R., Watson A.J., Leco K.J.: A null mutation for Tissue Inhibitor of Metalloproteinases-3 (Timp-3) impairs murine bronchiole branching morphogenesis. Dev. Biol., 2003; 261: 313–323
  36. Greenlee K.J., Werb Z., Kheradmand F.: Matrix metalloproteinases in lung: Multiple, multifarious, and multifaceted. Physiol. Rev., 2007; 87: 69–98
  37. Grenachea D.G., Gronowskib A.M.: Fetal lung maturity. Clin. Biochem., 2006; 39: 1–10
  38. Grodecka J., Kobos J., Zielińska-Każmierska B., Manowska B.: Evaluation of stromal proteins expression – tenastin and fibronectin – in the cysts and dental derived neoplasms of the facial part of the cranium. Wsp. Onkol., 2009; 13: 22–27
  39. Holm B.A., Kapur P., Irish M.S., Glick P.L.: Physiology and pathophysiology of lung development. J. Obstet Gynecol., 1997; 17: 519–527
  40. Hyde D.M., Tyler N.K., Putney L.F., Singh P., Gundersen H.J.: Total number and mean size of alveoli in mammalian lung estimated using fractionator sampling and unbiased estimates of the Euler characteristic of alveolar openings. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2004; 277: 216–226
  41. Isnard N., Legeais J.M., Renard G., Robert L.: Effect of hyaluronan on MMP expression and activation. Cell. Biol. Int., 2001; 25: 735–739
  42. Joshi S., Kotecha S.: Lung growth and development. Early Hum. Dev., 2007; 83: 789–794
  43. Kapoor C., Vaidya S., Wadhwan V., Hitesh, Kaur G., Pathak A.: Seesaw of matrix metalloproteinases (MMPs). J. Cancer. Res. Ther., 2016; 12: 28–35
  44. Kheradmand F., Rishi K., Werb Z.: Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J. Cell. Sci., 2002; 115: 839–848
  45. Kim E.M., Hwang O.: Role of matrix metalloproteinase-3 in neurodegeneration. J. Neurochem., 2011; 116: 22–32
  46. Kim H.I., Lee H.S., Kim T.H., Lee J.S., Lee S.T., Lee S.J.: Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells. Oncotarget, 2015; 6: 42905–42922
  47. Kinoh H., Sato H., Tsunezuka Y., Takino T., Kawashima A., Okada Y., Seiki M.: MT-MMP, the cell surface activator of pro-MMP-2 (progelatinase A), is expressed with substrate in mouse tissue during embryogenesis. J. Cell. Sci., 1996; 109: 953–959
  48. Kupai K., Szucs G., Cseh S., Hajdu I., Csonka C., Csont T., Ferdinandy P.: Matrix metalloproteinase activity assays: Importance of zymography. J. Pharmacol. Toxicol. Methods, 2010; 61: 205–209
  49. Kurzepa J., Baran M., Wątroba S., Barud M., Babula D.: Collagenases and gelatinases in bone healing. The focus on mandibular fractures. Curr. Issues. Pharm. Med. Sci., 2014; 27: 121–126
  50. Lambert E., Dassé E., Haye B., Petitfrère E.: TIMPs as multifacial proteins. Crit. Rev. Oncol. Hematol., 2004; 49: 187–198
  51. Lamoreaux W.J., Fitzgerald M.E.C., Reiner A., Hasty K.A., Charles S.T.: Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc. Res., 1998; 55: 29–42
  52. Li H., Ezra D.G., Burton M.J., Bailly M.: Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. Invest. Ophthalmol. Vis. Sci., 2013; 54: 4675–4682
  53. Lipka D., Boratyński J.: Metaloproteinazy MMP. Struktura i funkcja. Postępy. Hig. Med. Dośw., 2008; 62, 328–336
  54. Loftus I.M., Naylor A.R., Bell P.R., Thompson M.M.: Matrix metalloproteinases and atherosclerotic plaque instability. Br. J. Surg., 2002; 89: 680–694
  55. Loy M., Burggraf D., Martens K.H., Liebetrau M., Wunderlich N., Bültemeier G., Nemori R., Hamann G.F.: A gelatin in situ-overlay technique localizes brain matrix metalloproteinase activity in experimental focal cerebral ischemia. J. Neurosci. Methods, 2002; 116: 125–133
  56. Lu Y., Papagerakis P., Yamakoshi Y., Hu J.C., Bartlett J.D., Simmer J.P.: Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem., 2008; 389: 695–700
  57. Malicdem M., Taylor W., Goerke M., Devaskar U.: Ontogeny of rat lung type IV collagenase mRNA expression and collagenolytic activity during the perinatal period. Biol. Neonate, 1993; 64: 376–381
  58. Manicone A.M., Harju-Baker S., Johnston L.K., Chen A.J., Parks W.C.: Epilysin (matrix metalloproteinase-28) contributes to airway epithelial cell survival. Respir. Res., 2011; 12: 144
  59. Masumoto K., de Rooij J.D., Suita S., Rottier R., Tibboel D., de Krijger R.R.: Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases during normal human pulmonary development. Histopathology, 2005; 47: 410–419
  60. Morancho A., Rosell A., Garcia-Bonilla L., Montaner J.: Metalloproteinase and stroke infarct size: Role for anti-inflammatory treatment? Ann. N. Y. Acad. Sci., 2010; 1207: 123–133
  61. Mott J.D., Werb Z.: Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell. Biol., 2004; 16: 558–564
  62. Murphy G., Houbrechts A., Cockett M.I., Williamson R.A., O’Shea M., Docherty A.J.: The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry, 1991; 30: 8097–8102
  63. Murphy G., Segain J.P., O’Shea M., Cockett M., Ioannou C., Lefebvre O., Chambon P., Basset P.: The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J. Biol. Chem., 1993; 268: 15435–15441
  64. Nagase H., Visse R., Murphy G.: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006; 69: 562–573
  65. Newby A.C.: Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler. Thromb. Vasc. Biol., 2008; 28: 2108–2114
  66. Oblander S.A., Zhou Z., Gálvez B.G., Starcher B., Shannon J.M., Durbeej M., Arroyo A.G., Tryggvason K., Apte S.S.: Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation. Dev. Biol., 2005; 277: 255–269
  67. Okamoto T., Akuta T., Tamura F., van der Vliet A., Akaike T.: Molecular mechanism for activation and regulation of matrix metalloproteinases during bacterial infections and respiratory inflammation. Biol. Chem., 2004; 385: 997–1006
  68. Opdenakker G., van den Steen P.E., van Damme J.: Gelatinase B: A tuner and amplifier of immune functions. Trends Immunol., 2001; 22: 571–579
  69. Özenci V., Rinaldi L., Teleshova N., Matusevicius D., Kivisäkk P., Kouwenhoven M., Link H.: Metalloproteinases and their tissue inhibitors in multiple sclerosis. J. Autoimmun., 1999; 12: 297–303
  70. Page-McCaw A., Ewald A.J., Werb Z.: Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell. Biol., 2007; 8: 221–233
  71. Palosaari H., Pennington C.J., Larmas M., Edwards D.R., Tjäderhane L., Salo T.: Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) in mature human odontoblasts and pulp tissue. Eur. J. Oral. Sci., 2003; 111: 117–127
  72. Parks W.C., Shapiro S.D.: Matrix metalloproteinases in lung biology. Respir. Res., 2001; 2: 10–19
  73. Pepper M.S.: Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol., 2001; 21: 1104–1117
  74. Petty M.A., Wettstein J.G.: Elements of cerebral microvascular ischaemia. Brain. Res. Brain Res. Rev., 2001; 36: 23–34
  75. Pinkerton K.E., Joad J.P.: The mammalian respiratory system and critical windows of exposure for children’s health. Environ. Health Perspect., 2000; 108: 457–462
  76. Ries C.: Cytokine functions of TIMP-1. Cell. Mol. Life Sci., 2014; 71: 659–672
  77. Rolland G., Xu J., Dupret J.M., Post M.: Expression and characterization of type IV collagenases in rat lung cells during development. Exp. Cell Res., 1995; 218: 346–350
  78. Schittny J.C.: Development of the lung. Cell Tissue Res., 2017; 367: 427–444
  79. Schmidt R., Bültmann A., Ungerer M., Joghetaei N., Bülbül O., Thieme S., Chavakis T., Toole B.P., Gawaz M., Schömig A., May A.E.: Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: Implications in acute myocardial infarction. Circulation, 2006; 113: 834–841
  80. Serra P., Bruczko M., Zapico J.M., Puckowska A., Garcia M.A., Martin-Santamaria S., Ramos A., de Pascual-Teresa B.: MMP-2 selectivity in hydroxamate-type inhibitors. Curr. Med. Chem., 2012; 19: 1036–1064
  81. Snoek-van Beureden P.A., von den Hoff J.W.: Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques, 2005; 38: 73–83
  82. Sun Q., Weber C.R., Sohail A., Bernardo M.M., Toth M., Zhao H., Turner J.R., Fridman R.: MMP25 (MT6-MMP) is highly expressed in human colon cancer, promotes tumor growth, and exhibits unique biochemical properties. J. Biol. Chem., 2007; 282: 21998–22010
  83. Trojanek J.: Metaloproteinazy macierzy zewnątrzkomórkowej i ich tkankowe inhibitory. Postępy Biochem., 2012; 58: 353–362
  84. Tschanz S.A., Salm L.A., Roth-Kleiner M., Barré S.F., Burri P.H., Schittny J.C.: Rat lungs show a biphasic formation of new alveoli during postnatal development. J. Appl. Physiol., 2014; 117: 89–95
  85. van Hove I., Lemmens K., van de Velde S., Verslegers M., Moons L.: Matrix metalloproteinase-3 in the central nervous system: A look on the bright side. J. Neurochem., 2012; 123: 203–216
  86. Veldhuizen E.J., Haagsman H.P.: Role of pulmonary surfactant components in surface film formation and dynamics. Biochim. Biophys. Acta Biomembr., 2000; 1467: 255–270
  87. Verslegers M., Lemmens K., van Hove I., Moons L.: Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog. Neurobiol., 2013; 105: 60–78
  88. Wang X., Inoue S., Gu J., Miyoshi E., Noda K., Li W., Mizuno-Horikawa Y., Nakano M., Asahi M., Takahashi M., Uozumi N., Ihara S., Lee S.H., Ikeda Y., Yamaguchi Y., et al.: Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc. Natl. Acad. Sci. USA, 2005; 102: 15791–15796
  89. White S.J., Danowitz M., Solounias N.: Embryology and evolutionary history of the respiratory tract. Edorium. J. Anat. Embryo., 2016; 3: 54–62
  90. Woods J.C., Schittny J.C.: Lung structure at preterm and term birth. In: Fetal and Neonatal Lung Development: Clinical Correlates and Technologies for the Future, red.: A.H. Jobe, J.A. Whitsett, S.H. Abman. Cambridge University Press, Cambridge 2016, 126–140
  91. Wysocka A., Giziński S., Lechowski R.: Metaloproteinazy macierzy – ich struktura oraz znaczenie. Życie Weterynaryjne., 2014; 89: 223–227
  92. Yang J.S., Lin C.W., Su S.C., Yang S.F.: Pharmacodynamic considerations in the use of matrix metalloproteinase inhibitors in cancer treatment. Expert Opin. Drug Metab. Toxicol., 2016; 12: 191–200
  93. Zhao H., Bernardo M.M., Osenkowski P., Sohail A., Pei D., Nagase H., Kashiwagi M., Soloway P.D., DeClerck Y.A., Fridman R.: Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation. J. Biol. Chem., 2004; 279: 8592–8601
Language: English
Page range: 24 - 34
Submitted on: Jun 16, 2019
Accepted on: Jul 10, 2020
Published on: Jan 25, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Sławomir Wątroba, Tomasz Wiśniowski, Jarosław Bryda, Jacek Kurzepa, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.