Andreeva A.V., Kutuzov M.A., Voyno-Yasenetskaya T.A.: Regulation of surfactant secretion in alveolar type II cells. Am. J. Physiol. Lung. Cell. Mol. Physiol., 2007; 293: L259–L271
Arza B., De Maeyer M., Félez J., Collen D., Lijnen H.R.: Critical role of glutamic acid 202 in the enzymatic activity of stromelysin-1 (MMP-3). Eur. J. Biochem., 2001; 268: 826–831
Bauvois B.: New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta, 2012; 1825: 29–36
Belokhvostova D., Berzanskyte I., Cujba A.M., Jowett G., Marshall L., Prueller J., Watt F.M.: Homeostasis, regeneration and tumour formation in the mammalian epidermis. Int. J. Dev. Biol., 2018; 62: 571–582
Bolon I., Devouassoux M., Robert C., Moro D., Brambilla C., Brambilla E.: Expression of urokinase-type plasminogen activator, stromelysin-1, stromelysin-3 and matrilysin genes in lung carcinomas. Am. J. Pathol., 1997; 150: 1619–1629
Brew K., Dinakarpandian D., Nagase H.: Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochim. Biophys. Acta, 2000; 1477: 267–283
Brew K., Nagase H.: The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta, 2010; 1803: 55–71
Fink K., Boratyński J.: The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis. Postępy Hig. Med. Dośw., 2012; 66: 609–628
Fukuda Y., Ferrans V.J., Crystal R.G.: The development of alveolar septa in fetal sheep lung. An ultrastructural and immunohistochemical study. Am. J. Anat., 1983; 167: 405–439
Galis Z.S., Khatri J.J.: Matrix metalloproteinases in vascular remodeling and atherosclerosis: The good, the bad, and the ugly. Circ. Res., 2002; 90: 251–262
Ganser G.L., Stricklin G.P., Matrisian L.M.: EGF and TGFα influence in vitro lung development by the induction of matrix-degrading metalloproteinases. Int. J. Dev. Biol., 1991; 35: 453–461
Grodecka J., Kobos J., Zielińska-Każmierska B., Manowska B.: Evaluation of stromal proteins expression – tenastin and fibronectin – in the cysts and dental derived neoplasms of the facial part of the cranium. Wsp. Onkol., 2009; 13: 22–27
Hyde D.M., Tyler N.K., Putney L.F., Singh P., Gundersen H.J.: Total number and mean size of alveoli in mammalian lung estimated using fractionator sampling and unbiased estimates of the Euler characteristic of alveolar openings. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2004; 277: 216–226
Kheradmand F., Rishi K., Werb Z.: Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J. Cell. Sci., 2002; 115: 839–848
Kim H.I., Lee H.S., Kim T.H., Lee J.S., Lee S.T., Lee S.J.: Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells. Oncotarget, 2015; 6: 42905–42922
Kinoh H., Sato H., Tsunezuka Y., Takino T., Kawashima A., Okada Y., Seiki M.: MT-MMP, the cell surface activator of pro-MMP-2 (progelatinase A), is expressed with substrate in mouse tissue during embryogenesis. J. Cell. Sci., 1996; 109: 953–959
Kurzepa J., Baran M., Wątroba S., Barud M., Babula D.: Collagenases and gelatinases in bone healing. The focus on mandibular fractures. Curr. Issues. Pharm. Med. Sci., 2014; 27: 121–126
Lamoreaux W.J., Fitzgerald M.E.C., Reiner A., Hasty K.A., Charles S.T.: Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc. Res., 1998; 55: 29–42
Loy M., Burggraf D., Martens K.H., Liebetrau M., Wunderlich N., Bültemeier G., Nemori R., Hamann G.F.: A gelatin in situ-overlay technique localizes brain matrix metalloproteinase activity in experimental focal cerebral ischemia. J. Neurosci. Methods, 2002; 116: 125–133
Malicdem M., Taylor W., Goerke M., Devaskar U.: Ontogeny of rat lung type IV collagenase mRNA expression and collagenolytic activity during the perinatal period. Biol. Neonate, 1993; 64: 376–381
Masumoto K., de Rooij J.D., Suita S., Rottier R., Tibboel D., de Krijger R.R.: Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases during normal human pulmonary development. Histopathology, 2005; 47: 410–419
Morancho A., Rosell A., Garcia-Bonilla L., Montaner J.: Metalloproteinase and stroke infarct size: Role for anti-inflammatory treatment? Ann. N. Y. Acad. Sci., 2010; 1207: 123–133
Murphy G., Segain J.P., O’Shea M., Cockett M., Ioannou C., Lefebvre O., Chambon P., Basset P.: The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J. Biol. Chem., 1993; 268: 15435–15441
Newby A.C.: Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler. Thromb. Vasc. Biol., 2008; 28: 2108–2114
Oblander S.A., Zhou Z., Gálvez B.G., Starcher B., Shannon J.M., Durbeej M., Arroyo A.G., Tryggvason K., Apte S.S.: Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation. Dev. Biol., 2005; 277: 255–269
Okamoto T., Akuta T., Tamura F., van der Vliet A., Akaike T.: Molecular mechanism for activation and regulation of matrix metalloproteinases during bacterial infections and respiratory inflammation. Biol. Chem., 2004; 385: 997–1006
Özenci V., Rinaldi L., Teleshova N., Matusevicius D., Kivisäkk P., Kouwenhoven M., Link H.: Metalloproteinases and their tissue inhibitors in multiple sclerosis. J. Autoimmun., 1999; 12: 297–303
Palosaari H., Pennington C.J., Larmas M., Edwards D.R., Tjäderhane L., Salo T.: Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) in mature human odontoblasts and pulp tissue. Eur. J. Oral. Sci., 2003; 111: 117–127
Pepper M.S.: Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol., 2001; 21: 1104–1117
Pinkerton K.E., Joad J.P.: The mammalian respiratory system and critical windows of exposure for children’s health. Environ. Health Perspect., 2000; 108: 457–462
Rolland G., Xu J., Dupret J.M., Post M.: Expression and characterization of type IV collagenases in rat lung cells during development. Exp. Cell Res., 1995; 218: 346–350
Snoek-van Beureden P.A., von den Hoff J.W.: Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques, 2005; 38: 73–83
Sun Q., Weber C.R., Sohail A., Bernardo M.M., Toth M., Zhao H., Turner J.R., Fridman R.: MMP25 (MT6-MMP) is highly expressed in human colon cancer, promotes tumor growth, and exhibits unique biochemical properties. J. Biol. Chem., 2007; 282: 21998–22010
Tschanz S.A., Salm L.A., Roth-Kleiner M., Barré S.F., Burri P.H., Schittny J.C.: Rat lungs show a biphasic formation of new alveoli during postnatal development. J. Appl. Physiol., 2014; 117: 89–95
van Hove I., Lemmens K., van de Velde S., Verslegers M., Moons L.: Matrix metalloproteinase-3 in the central nervous system: A look on the bright side. J. Neurochem., 2012; 123: 203–216
Veldhuizen E.J., Haagsman H.P.: Role of pulmonary surfactant components in surface film formation and dynamics. Biochim. Biophys. Acta Biomembr., 2000; 1467: 255–270
Verslegers M., Lemmens K., van Hove I., Moons L.: Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog. Neurobiol., 2013; 105: 60–78
Wang X., Inoue S., Gu J., Miyoshi E., Noda K., Li W., Mizuno-Horikawa Y., Nakano M., Asahi M., Takahashi M., Uozumi N., Ihara S., Lee S.H., Ikeda Y., Yamaguchi Y., et al.: Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc. Natl. Acad. Sci. USA, 2005; 102: 15791–15796
Woods J.C., Schittny J.C.: Lung structure at preterm and term birth. In: Fetal and Neonatal Lung Development: Clinical Correlates and Technologies for the Future, red.: A.H. Jobe, J.A. Whitsett, S.H. Abman. Cambridge University Press, Cambridge 2016, 126–140
Yang J.S., Lin C.W., Su S.C., Yang S.F.: Pharmacodynamic considerations in the use of matrix metalloproteinase inhibitors in cancer treatment. Expert Opin. Drug Metab. Toxicol., 2016; 12: 191–200
Zhao H., Bernardo M.M., Osenkowski P., Sohail A., Pei D., Nagase H., Kashiwagi M., Soloway P.D., DeClerck Y.A., Fridman R.: Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation. J. Biol. Chem., 2004; 279: 8592–8601