References
- Beekes RSP. [να̃νoς]. In: Etymological Dictionary of Greek, volume II, Beekes RSP, editor. Leiden: Brill; 2010, p. 995.
- Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: an overview of preparation and characterization. J App Pharm Sci. 2011; 1:228-34.
- Sailaja AK, Amareskwar P. Preparation of BSA nanoparticles by desolvation technique using acetone as desolvating agent. Int J Pharm Sci Nanotech. 2012; 5:1643-47.
- Scalf J, West P. Part 1: Introduction to nanoparticle characterization with AFM. Santa Clara: Pacific Nanotechnology, Inc.; 2006, p. 1-8.
- Okuyama K, Lenggoro W, Iwaki T. Nanoparticle preparation and its application - a nanotechnology particle project in Japan. In: Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04); 2004 Aug 25–27; Banff, AB, Canada. Los Alamitos, CA: IEEE Computer Society; 2004, p. 369-372.
- Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Bio Med Res. 2014; 2014:1-12. 10.1155/2014/180549.
- Durán N, Silveira CP, Durán M, Stéfani D, Martinez T. Silver nanoparticle protein corona and toxicity: a mini review. J Nanobiotechnology. 2015; 13:1-17.
- Jain N, Bhargava A, Rathi M, Dilip RV, Panwar J. Removal of protein capping enhances the antibacterial efficiency of biosynthesized silver nanoparticles. PLoS One. 2015; 10:1-19.
- Akbarzadeh A, Sadabady RR, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; 8:1-9.
- Prabhu V, Uzzaman S, Mariammal V, Grace B, Guruvayoorappan C. Nanoparticles in drug delivery and cancer therapy: the giant rats tail. J Cancer Ther. 2011; 2:325-34.10.4236/jct.2011.23045
- Heneweer C, Gendy SEM, Medina OP. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. Ther Deliv. 2012; 3:1-13.
- Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2012; 65:36-48.23036225
- Salústio PJ, Pontes P, Conduto C, Sanches I, Carvalho C, Arrais J, et al. Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS Pharm Sci Tech. 2011; 12:1276-92.10.1208/s12249-011-9690-2
- Zhanga J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013; 65:1-39.
- Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech. 2005; 6:E329-57.10.1208/pt060243
- Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Bio Med Res Int. 2015; 2015:1-15.
- Vasile E, Serafim A, Petre D, Giol D, Dubruel P, Iovu H, Stancu IC. Direct synthesis and morphological characterization of gold dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potential.Scientific World J. 2014; 2014:1-5.
- Córdoba EV, Maly M, De la Mata F, Gómez R, Pion M, Muñoz MA, et al. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomed. 2016; 11:1281-94.
- Glasgow MDA, Chougule MB. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J Biomed Nanotechnol, 2015; 11:1859-98.10.1166/jbn.2015.214526554150
- Tiwari PM, Vig K, Dennis VA, Shree R. Singh. Functionalized gold nanoparticles and their biomedical applications. J Nanosci Nanotechnol. 2011; 1:31-63.
- Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res. 2014; 13:1169-77.10.4314/tjpr.v13i7.23
- Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold nanotheranostics: proof-of-concept or clinical tool? J Nanomater. 2015; 5:1853-7910.3390/nano5041853
- Mocan L. Drug delivery applications of gold nanoparticles. Biotechnol Mol Biol Nanomed. 2013; 1: 1-6.
- Jawahara N, Surendraa E, Krishna KR. A review on carbon nanotubes: a novel drug carrier for targeting to cancer cells. J Pharm Sci Res. 2015; 7:141-54.
- Kushwaha SKS, Ghoshal S, Rai AK, Singh S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci. 2013; 49:629-43.10.1590/S1984-82502013000400002
- Aboofazeli R. Carbon nanotubes: a promising approach for drug delivery. Iran J Pharm Res. 2010;9: 1-3.24363699
- Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv. 2008; 5:263-7.1831864910.1517/17425247.5.3.263
- Zrazhevskiy P, Senawb WM, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010: 1-29.
- He D, Wang D, Quan W, Yu C-y. Functional quantum dots for promising cancer diagnosis and therapy. Int J Nanomed Nanosurg. 2015; 1:1-6.
- Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010; 75:1-18.10.1016/j.colsurfb.2009.09.00119782542
- Muhamad II, Selvakumaran S, Lazim NAM. Designing polymeric nanoparticles for targeted drug delivery system. Nanomedicine: 287-313.
- Bennet D, Kim S. Polymer nanoparticles for smart drug delivery. 2014:257-310.
- Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010; 624:163-75.10.1007/978-1-60761-609-2_1120217595
- Das S, Banerjee R and Bellare J. Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs. 2005; 18:203-12.
- Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm. 2010; 76:1-9.2042090410.1016/j.ejpb.2010.04.008
- Gulfam M, Kim JE, Lee JM, Ku B, Chung HB, Chung BG. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir. 2012; 28:8216-23.10.1021/la300691n22568862
- Irache JM, Gueguen J, Orecchioni AM. Development of drug delivery systems from vegetal proteins: legumin nanoparticles. Drug Dev Ind Pharm. 2008; 22: 1-16.
- Huang W, Zou T, Li S, Jing J, Xia X, Liu X. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS Pharm Sci Tech. 2013; 14:675-81.10.1208/s12249-013-9953-1
- Sahu A, Kasoju N, Bora U. Fluorescence study of curcumin–casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules. 2008; 9:2905-12.10.1021/bm800683f18785706
- Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013; 42:1147-235.10.1039/C2CS35265F23238558
- Yang L, Cui F, Cun D, Tao A, Shi K, Lin W. Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int J Pharm. 2007; 340:163-72.1748277910.1016/j.ijpharm.2007.03.028
- Wang Y, Li P, Truong T, Tran D, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016; 6:1-18.
- Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013; 3:e24281.1-81.12.
- Allouche J. Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. In: Brayner R, Fiévet F, Coradin T, editors. Nanomaterials: a danger or a promise? London: Springer-Verlag; 2013, p. 27-74.
- Manjanna KM, Shivakumar B, Kumar TMP. Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritis. Crit Rev Ther Drug Carrier Syst. 2010; 27:501-32.
- Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine. 2007; 2:219-32.10.2217/17435889.2.2.219
- Swed A, Cordonnier T, Fleury F, Boury F. Protein encapsulation into PLGA nanoparticles by a novel phase, separation method using non-toxic solvents. J Nanomed Nanotechnol. 2014; 5:1-8.
- Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, Zhang Z. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010; 5:669-77.20957218
- Chan Y-H, Wu P-J. Semi conducting polymer nanoparticles as fluorescent probes for biological imaging and sensing. Part Part Syst Charact. 2015; 32: 11-28.10.1002/ppsc.201400123
- Rhaese S, von Briesen H, Rübsamen-Waigmann H, Kreuter J, Langer K. Human serum albuminpolyethylenimine nanoparticles for gene delivery. J Control Release. 2003; 92:199-208.10.1016/S0168-3659(03)00302-X14499197
- Duclairoir C, Nakache E, Marchais H, Orecchioni AM. Formation of gliadin nanoparticles: influence of the solubility parameter of the protein solvent. Colloid Polym Sci. 1998; 276:321-7.10.1007/s003960050246
- Cruz MM, Flores-Fernandez GM, Morales-Cruz M, Orellano EA, Rodriguez-Martinez JA, Ruiz M, et al., Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results Pharma Sciences. 2012; 2:79-85.10.1016/j.rinphs.2012.11.001
- Elzoghby AO, El-Fotoh WSA, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011; 153: 206-16.10.1016/j.jconrel.2011.02.01021338636
- Paukkonen H. Casein-poly (acrylic acid) nanoparticles as controlled delivery vehicles. Master’s thesis, University of Helsinki, 2013, p. 1-117.
- Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013; 14:1629-54.10.3390/ijms1401162923344060
- Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010; 398:53-66.10.1007/s00216-010-3737-1
- Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol. 2006; 17:272-83.10.1016/j.tifs.2005.12.011
- Chen L, Subirade M. Food-protein-derived materials and their use as carriers and delivery systems for active food components. In: Garti N, editor. Delivery and controlled release of bioactives in foods and nutraceuticals. New Dehli: Woodhead Publishing; 2008, p. 251-78.
- Livney YD. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci. 2010; 15:73-83.10.1016/j.cocis.2009.11.002
- Swaisgood HE. Chemistry of the caseins. In: Fox PF, McSweeney PLH. Advanced dairy chemistry. Volume 1. Proteins, 3rd ed. New York: Kluwer Academic/Plenum; 2003, p. 139-202.
- Semo E, Kesselman E, Danino D, Livney YD. Casein micelle as a natural nanocapsular vehicle for nutraceuticals. Food Hydrocoll. 2007; 21:936-42.10.1016/j.foodhyd.2006.09.006
- Diak AO, Bani-Jaber A, Amro B, Jones D, Andrews GP. The manufacture and characterization of casein films as novel tablet coatings. Food Bioprod Process. 2007; 85:284-90.10.1205/fbp07030
- Lauber S, Klostermeyer H, Henle T. Influence of irreversible casein crosslinking on the gel strength of yoghurt. Czech J Food Sci. 2000; 18:69-71.
- Watanabe A, Hanawa T, Sugihara M, Yamamoto K. Release profiles of phenytoin from new oral dosage form for the elderly. Chem Pharm Bull. 1994; 42:1642-5.795491610.1248/cpb.42.1642
- Zimet P, Rosenberg D, Livney YD. Re-assembled casein micelles and casein nanoparticles as nanovehicles for w-3 polyunsaturated fatty acids. Food Hydrocoll. 2011; 25:1270-6.10.1016/j.foodhyd.2010.11.025
- Vino S, Abinaya A, Divya V, Ghosh AR. Controlled release of phenytoin sodium from casein microparticles. Int J Pharm Biol Sci. 2014; 5:233-41.
- Singh A, Bajpai J, Bajpai AK. Investigation of magnetically controlled water intake behavior of Iron Oxide Impregnated Superparamagnetic Casein Nanoparticles (IOICNPs). J Nanobiotechnology. 2014; 12:1-13.
- Raj J, Uppuluri KB. Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluation. Biomed Pharma J. 2015; 8: 83-9.10.13005/bpj/585
- Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing, nature to cure disease. Mol Cell The. 2016; 3:1-12.
- Yu Z, Yu M, Zhang Z, Hong G Xiong QQ. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res Lett. 2014; 9:1-7.
- Jenita JL, Chocalingam V, Wilson B. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug— Efavirenz. Int J Pharm Investig. 2014; 4:142-8.10.4103/2230-973X.13834825126528
- Maghsoudi A, Shojaosadati SA, Farahani EV. 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS Pharm Sci Tech. 2008; 9:1092-6.10.1208/s12249-008-9146-5
- Li FQ, Su H, Wang J, Liu JY, Zhu QG, Fei YB, Pan YH, Hu JH. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Phar. 2008; 349:274-82.10.1016/j.ijpharm.2007.08.001
- Namasivayam SKR, Robin ATG. Preparation, optimization and characterization of biocompatible nanoalbumin-ofloxacin (BSANP-OF) conjugate and evaluation of control release, anti bacterial activity against clinical isolate of Pseudomonas aeruginosa. Asian J Pharm Clin Res. 2013; 6:235-9.
- Zhen X, Wang X, Xie C, Wu W, Jiang X. Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials. 2013; 34:1372-82.10.1016/j.biomaterials.2012.10.06123158934
- Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, Atri MS, Sharifizadeh A, Farhadi M, et al. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Sci Technol. 2011; 44:2166-72.10.1016/j.lwt.2011.05.023
- Bar-Zeev M, Assaraf YG, Livney DY. b-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget. 2016; 7:23322-34.
- Shapira A, Assaraf YG, Livney YD. Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomedicine. 2010; 6:119-26.10.1016/j.nano.2009.06.00619616122
- Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int J Nanomedicine. 2013; 2013:1721-32.
- Huang J, Qian W, Wang L, Wu H, Zhou H, Wang AY, et al. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int J Nanomedicine. 2016; 2016: 3087-99.
- Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K, et al. Sequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomaterialia. 2013; 10: 2112-24.24389318
- Narayanan S, Mony U, Vijaykumar DK, Koyakutty M, Paul-Prasanth B, Menon D. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine. 2015; 11: 1399-406.10.1016/j.nano.2015.03.01525888278
- Divsalar A, Razmi M, Saboury AA, Seyedarabi A. The design and characterization of a novel beta-casein nano-vehicle loaded with platinum anticancer drug for drug delivery. Anti-Cancer Agents Med Chem. 2014; 14:892-900.10.2174/1871520614666140207123147
- Razmi M, Divsalar A, Saboury AA, Izadi Z, Haeré T, Mansuri-Torshizi H. Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Colloids Surf B Biointerfaces. 2013; 1:362-7.
- Takakura Y, Fujita T, Hashida M, Sezaki H. Disposition characteristics of macromolecules in tumor-bearing mice. Pharm Res. 1990; 7:339-46.10.1023/A:10158071197531694582
- Raj J, Uppuluri KB. Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluation. Biomed Pharmacol J. 2015; 8: 83-9.10.13005/bpj/585
- Jose P, Sundar K, Anjali CH, Ravindran A. Metformin-loaded BSA nanoparticles in cancer therapy: a new perspective for an old antidiabetic drug. Cell Biochem Biophys. 2015; 71:627-36.10.1007/s12013-014-0242-825209744
- Noorani L, Stenzel M, Liang R, Pourgholami MH, Morris DL. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J Nanobiotechnology. 2015; 13:1-12.
- Li J-m, Chen W, Wang H, Jin C, Yu X-j, Lu W-y, et al. Preparation of albumin nanospheres loaded with gemcitabine and their cytotoxicity against BXPC-3 cells in vitro. Acta Pharmacol Sin. 2009; 30:1337-43.10.1038/aps.2009.12519730429
- Desai N. Nab technology: a drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting. Drug Delivery Report Winter 2007/2008; Oxford: PharmaVentures; 2008, p. 37-41.
- Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol. 2005; 23:7794-803.10.1200/JCO.2005.04.93716172456
- Shi Y, Su C, Cui W, Li H, Liu L, Feng B, et al. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J Nanobiotechnology. 2014; 12:1-11.
- Lomis N, Westfall S, Farahdel L, Malhotra M, Shum-Tim D, Prakash S. Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials. 2016; 6: 1-17.
- Tellingen O, Huizing MT, Panday VRN, Schellens JHM, Nooijen WJ, Beijnen JH. Cremophor-EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patient. Br J Cancer. 1999; 81:330-5.1049636110.1038/sj.bjc.6690696
- De T, Trieu V, Yim Z, Cordia J, Yang A, Beals B, et al. Nanoparticle albumin-bound (nab) rapamycin as an anticancer agent. Clin Cancer Res. 2007; 67:14-8.
- Han J, Wang Q, Zhang Z, Gong T, Sun X. Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small. 2014; 10:524-35.10.1002/smll.20130199224106138