Have a personal or library account? Click to login
Nanoparticles in therapeutic applications and role of albumin and casein nanoparticles in cancer therapy Cover

Nanoparticles in therapeutic applications and role of albumin and casein nanoparticles in cancer therapy

Open Access
|Aug 2017

References

  1. Beekes RSP. [να̃νoς]. In: Etymological Dictionary of Greek, volume II, Beekes RSP, editor. Leiden: Brill; 2010, p. 995.
  2. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: an overview of preparation and characterization. J App Pharm Sci. 2011; 1:228-34.
  3. Sailaja AK, Amareskwar P. Preparation of BSA nanoparticles by desolvation technique using acetone as desolvating agent. Int J Pharm Sci Nanotech. 2012; 5:1643-47.
  4. Scalf J, West P. Part 1: Introduction to nanoparticle characterization with AFM. Santa Clara: Pacific Nanotechnology, Inc.; 2006, p. 1-8.
  5. Okuyama K, Lenggoro W, Iwaki T. Nanoparticle preparation and its application - a nanotechnology particle project in Japan. In: Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04); 2004 Aug 25–27; Banff, AB, Canada. Los Alamitos, CA: IEEE Computer Society; 2004, p. 369-372.
  6. Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Bio Med Res. 2014; 2014:1-12. 10.1155/2014/180549.
  7. Durán N, Silveira CP, Durán M, Stéfani D, Martinez T. Silver nanoparticle protein corona and toxicity: a mini review. J Nanobiotechnology. 2015; 13:1-17.
  8. Jain N, Bhargava A, Rathi M, Dilip RV, Panwar J. Removal of protein capping enhances the antibacterial efficiency of biosynthesized silver nanoparticles. PLoS One. 2015; 10:1-19.
  9. Akbarzadeh A, Sadabady RR, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; 8:1-9.
  10. Prabhu V, Uzzaman S, Mariammal V, Grace B, Guruvayoorappan C. Nanoparticles in drug delivery and cancer therapy: the giant rats tail. J Cancer Ther. 2011; 2:325-34.10.4236/jct.2011.23045
  11. Heneweer C, Gendy SEM, Medina OP. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. Ther Deliv. 2012; 3:1-13.
  12. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2012; 65:36-48.23036225
  13. Salústio PJ, Pontes P, Conduto C, Sanches I, Carvalho C, Arrais J, et al. Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS Pharm Sci Tech. 2011; 12:1276-92.10.1208/s12249-011-9690-2
  14. Zhanga J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013; 65:1-39.
  15. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech. 2005; 6:E329-57.10.1208/pt060243
  16. Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Bio Med Res Int. 2015; 2015:1-15.
  17. Vasile E, Serafim A, Petre D, Giol D, Dubruel P, Iovu H, Stancu IC. Direct synthesis and morphological characterization of gold dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potential.Scientific World J. 2014; 2014:1-5.
  18. Córdoba EV, Maly M, De la Mata F, Gómez R, Pion M, Muñoz MA, et al. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomed. 2016; 11:1281-94.
  19. Glasgow MDA, Chougule MB. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J Biomed Nanotechnol, 2015; 11:1859-98.10.1166/jbn.2015.214526554150
  20. Tiwari PM, Vig K, Dennis VA, Shree R. Singh. Functionalized gold nanoparticles and their biomedical applications. J Nanosci Nanotechnol. 2011; 1:31-63.
  21. Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res. 2014; 13:1169-77.10.4314/tjpr.v13i7.23
  22. Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold nanotheranostics: proof-of-concept or clinical tool? J Nanomater. 2015; 5:1853-7910.3390/nano5041853
  23. Mocan L. Drug delivery applications of gold nanoparticles. Biotechnol Mol Biol Nanomed. 2013; 1: 1-6.
  24. Jawahara N, Surendraa E, Krishna KR. A review on carbon nanotubes: a novel drug carrier for targeting to cancer cells. J Pharm Sci Res. 2015; 7:141-54.
  25. Kushwaha SKS, Ghoshal S, Rai AK, Singh S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci. 2013; 49:629-43.10.1590/S1984-82502013000400002
  26. Aboofazeli R. Carbon nanotubes: a promising approach for drug delivery. Iran J Pharm Res. 2010;9: 1-3.24363699
  27. Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv. 2008; 5:263-7.1831864910.1517/17425247.5.3.263
  28. Zrazhevskiy P, Senawb WM, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010: 1-29.
  29. He D, Wang D, Quan W, Yu C-y. Functional quantum dots for promising cancer diagnosis and therapy. Int J Nanomed Nanosurg. 2015; 1:1-6.
  30. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010; 75:1-18.10.1016/j.colsurfb.2009.09.00119782542
  31. Muhamad II, Selvakumaran S, Lazim NAM. Designing polymeric nanoparticles for targeted drug delivery system. Nanomedicine: 287-313.
  32. Bennet D, Kim S. Polymer nanoparticles for smart drug delivery. 2014:257-310.
  33. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010; 624:163-75.10.1007/978-1-60761-609-2_1120217595
  34. Das S, Banerjee R and Bellare J. Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs. 2005; 18:203-12.
  35. Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm. 2010; 76:1-9.2042090410.1016/j.ejpb.2010.04.008
  36. Gulfam M, Kim JE, Lee JM, Ku B, Chung HB, Chung BG. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir. 2012; 28:8216-23.10.1021/la300691n22568862
  37. Irache JM, Gueguen J, Orecchioni AM. Development of drug delivery systems from vegetal proteins: legumin nanoparticles. Drug Dev Ind Pharm. 2008; 22: 1-16.
  38. Huang W, Zou T, Li S, Jing J, Xia X, Liu X. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS Pharm Sci Tech. 2013; 14:675-81.10.1208/s12249-013-9953-1
  39. Sahu A, Kasoju N, Bora U. Fluorescence study of curcumin–casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules. 2008; 9:2905-12.10.1021/bm800683f18785706
  40. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013; 42:1147-235.10.1039/C2CS35265F23238558
  41. Yang L, Cui F, Cun D, Tao A, Shi K, Lin W. Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int J Pharm. 2007; 340:163-72.1748277910.1016/j.ijpharm.2007.03.028
  42. Wang Y, Li P, Truong T, Tran D, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016; 6:1-18.
  43. Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013; 3:e24281.1-81.12.
  44. Allouche J. Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. In: Brayner R, Fiévet F, Coradin T, editors. Nanomaterials: a danger or a promise? London: Springer-Verlag; 2013, p. 27-74.
  45. Manjanna KM, Shivakumar B, Kumar TMP. Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritis. Crit Rev Ther Drug Carrier Syst. 2010; 27:501-32.
  46. Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine. 2007; 2:219-32.10.2217/17435889.2.2.219
  47. Swed A, Cordonnier T, Fleury F, Boury F. Protein encapsulation into PLGA nanoparticles by a novel phase, separation method using non-toxic solvents. J Nanomed Nanotechnol. 2014; 5:1-8.
  48. Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, Zhang Z. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010; 5:669-77.20957218
  49. Chan Y-H, Wu P-J. Semi conducting polymer nanoparticles as fluorescent probes for biological imaging and sensing. Part Part Syst Charact. 2015; 32: 11-28.10.1002/ppsc.201400123
  50. Rhaese S, von Briesen H, Rübsamen-Waigmann H, Kreuter J, Langer K. Human serum albuminpolyethylenimine nanoparticles for gene delivery. J Control Release. 2003; 92:199-208.10.1016/S0168-3659(03)00302-X14499197
  51. Duclairoir C, Nakache E, Marchais H, Orecchioni AM. Formation of gliadin nanoparticles: influence of the solubility parameter of the protein solvent. Colloid Polym Sci. 1998; 276:321-7.10.1007/s003960050246
  52. Cruz MM, Flores-Fernandez GM, Morales-Cruz M, Orellano EA, Rodriguez-Martinez JA, Ruiz M, et al., Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results Pharma Sciences. 2012; 2:79-85.10.1016/j.rinphs.2012.11.001
  53. Elzoghby AO, El-Fotoh WSA, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011; 153: 206-16.10.1016/j.jconrel.2011.02.01021338636
  54. Paukkonen H. Casein-poly (acrylic acid) nanoparticles as controlled delivery vehicles. Master’s thesis, University of Helsinki, 2013, p. 1-117.
  55. Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013; 14:1629-54.10.3390/ijms1401162923344060
  56. Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010; 398:53-66.10.1007/s00216-010-3737-1
  57. Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol. 2006; 17:272-83.10.1016/j.tifs.2005.12.011
  58. Chen L, Subirade M. Food-protein-derived materials and their use as carriers and delivery systems for active food components. In: Garti N, editor. Delivery and controlled release of bioactives in foods and nutraceuticals. New Dehli: Woodhead Publishing; 2008, p. 251-78.
  59. Livney YD. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci. 2010; 15:73-83.10.1016/j.cocis.2009.11.002
  60. Swaisgood HE. Chemistry of the caseins. In: Fox PF, McSweeney PLH. Advanced dairy chemistry. Volume 1. Proteins, 3rd ed. New York: Kluwer Academic/Plenum; 2003, p. 139-202.
  61. Semo E, Kesselman E, Danino D, Livney YD. Casein micelle as a natural nanocapsular vehicle for nutraceuticals. Food Hydrocoll. 2007; 21:936-42.10.1016/j.foodhyd.2006.09.006
  62. Diak AO, Bani-Jaber A, Amro B, Jones D, Andrews GP. The manufacture and characterization of casein films as novel tablet coatings. Food Bioprod Process. 2007; 85:284-90.10.1205/fbp07030
  63. Lauber S, Klostermeyer H, Henle T. Influence of irreversible casein crosslinking on the gel strength of yoghurt. Czech J Food Sci. 2000; 18:69-71.
  64. Watanabe A, Hanawa T, Sugihara M, Yamamoto K. Release profiles of phenytoin from new oral dosage form for the elderly. Chem Pharm Bull. 1994; 42:1642-5.795491610.1248/cpb.42.1642
  65. Zimet P, Rosenberg D, Livney YD. Re-assembled casein micelles and casein nanoparticles as nanovehicles for w-3 polyunsaturated fatty acids. Food Hydrocoll. 2011; 25:1270-6.10.1016/j.foodhyd.2010.11.025
  66. Vino S, Abinaya A, Divya V, Ghosh AR. Controlled release of phenytoin sodium from casein microparticles. Int J Pharm Biol Sci. 2014; 5:233-41.
  67. Singh A, Bajpai J, Bajpai AK. Investigation of magnetically controlled water intake behavior of Iron Oxide Impregnated Superparamagnetic Casein Nanoparticles (IOICNPs). J Nanobiotechnology. 2014; 12:1-13.
  68. Raj J, Uppuluri KB. Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluation. Biomed Pharma J. 2015; 8: 83-9.10.13005/bpj/585
  69. Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing, nature to cure disease. Mol Cell The. 2016; 3:1-12.
  70. Yu Z, Yu M, Zhang Z, Hong G Xiong QQ. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res Lett. 2014; 9:1-7.
  71. Jenita JL, Chocalingam V, Wilson B. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug— Efavirenz. Int J Pharm Investig. 2014; 4:142-8.10.4103/2230-973X.13834825126528
  72. Maghsoudi A, Shojaosadati SA, Farahani EV. 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS Pharm Sci Tech. 2008; 9:1092-6.10.1208/s12249-008-9146-5
  73. Li FQ, Su H, Wang J, Liu JY, Zhu QG, Fei YB, Pan YH, Hu JH. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Phar. 2008; 349:274-82.10.1016/j.ijpharm.2007.08.001
  74. Namasivayam SKR, Robin ATG. Preparation, optimization and characterization of biocompatible nanoalbumin-ofloxacin (BSANP-OF) conjugate and evaluation of control release, anti bacterial activity against clinical isolate of Pseudomonas aeruginosa. Asian J Pharm Clin Res. 2013; 6:235-9.
  75. Zhen X, Wang X, Xie C, Wu W, Jiang X. Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials. 2013; 34:1372-82.10.1016/j.biomaterials.2012.10.06123158934
  76. Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, Atri MS, Sharifizadeh A, Farhadi M, et al. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Sci Technol. 2011; 44:2166-72.10.1016/j.lwt.2011.05.023
  77. Bar-Zeev M, Assaraf YG, Livney DY. b-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget. 2016; 7:23322-34.
  78. Shapira A, Assaraf YG, Livney YD. Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomedicine. 2010; 6:119-26.10.1016/j.nano.2009.06.00619616122
  79. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int J Nanomedicine. 2013; 2013:1721-32.
  80. Huang J, Qian W, Wang L, Wu H, Zhou H, Wang AY, et al. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int J Nanomedicine. 2016; 2016: 3087-99.
  81. Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K, et al. Sequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomaterialia. 2013; 10: 2112-24.24389318
  82. Narayanan S, Mony U, Vijaykumar DK, Koyakutty M, Paul-Prasanth B, Menon D. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine. 2015; 11: 1399-406.10.1016/j.nano.2015.03.01525888278
  83. Divsalar A, Razmi M, Saboury AA, Seyedarabi A. The design and characterization of a novel beta-casein nano-vehicle loaded with platinum anticancer drug for drug delivery. Anti-Cancer Agents Med Chem. 2014; 14:892-900.10.2174/1871520614666140207123147
  84. Razmi M, Divsalar A, Saboury AA, Izadi Z, Haeré T, Mansuri-Torshizi H. Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Colloids Surf B Biointerfaces. 2013; 1:362-7.
  85. Takakura Y, Fujita T, Hashida M, Sezaki H. Disposition characteristics of macromolecules in tumor-bearing mice. Pharm Res. 1990; 7:339-46.10.1023/A:10158071197531694582
  86. Raj J, Uppuluri KB. Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluation. Biomed Pharmacol J. 2015; 8: 83-9.10.13005/bpj/585
  87. Jose P, Sundar K, Anjali CH, Ravindran A. Metformin-loaded BSA nanoparticles in cancer therapy: a new perspective for an old antidiabetic drug. Cell Biochem Biophys. 2015; 71:627-36.10.1007/s12013-014-0242-825209744
  88. Noorani L, Stenzel M, Liang R, Pourgholami MH, Morris DL. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J Nanobiotechnology. 2015; 13:1-12.
  89. Li J-m, Chen W, Wang H, Jin C, Yu X-j, Lu W-y, et al. Preparation of albumin nanospheres loaded with gemcitabine and their cytotoxicity against BXPC-3 cells in vitro. Acta Pharmacol Sin. 2009; 30:1337-43.10.1038/aps.2009.12519730429
  90. Desai N. Nab technology: a drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting. Drug Delivery Report Winter 2007/2008; Oxford: PharmaVentures; 2008, p. 37-41.
  91. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol. 2005; 23:7794-803.10.1200/JCO.2005.04.93716172456
  92. Shi Y, Su C, Cui W, Li H, Liu L, Feng B, et al. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J Nanobiotechnology. 2014; 12:1-11.
  93. Lomis N, Westfall S, Farahdel L, Malhotra M, Shum-Tim D, Prakash S. Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials. 2016; 6: 1-17.
  94. Tellingen O, Huizing MT, Panday VRN, Schellens JHM, Nooijen WJ, Beijnen JH. Cremophor-EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patient. Br J Cancer. 1999; 81:330-5.1049636110.1038/sj.bjc.6690696
  95. De T, Trieu V, Yim Z, Cordia J, Yang A, Beals B, et al. Nanoparticle albumin-bound (nab) rapamycin as an anticancer agent. Clin Cancer Res. 2007; 67:14-8.
  96. Han J, Wang Q, Zhang Z, Gong T, Sun X. Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small. 2014; 10:524-35.10.1002/smll.20130199224106138
DOI: https://doi.org/10.5372/1905-7415.1101.534 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 3 - 20
Published on: Aug 31, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Amrit Rai, Josphine Jenifer, Ravi Theaj Prakash Upputuri, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.