Have a personal or library account? Click to login
Review of the role of basic fibroblast growth factor in dental tissue-derived mesenchymal stem cells Cover

Review of the role of basic fibroblast growth factor in dental tissue-derived mesenchymal stem cells

Open Access
|Jan 2017

References

  1. 1Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001; 2:3005.
    OrnitzDMItohNFibroblast growth factorsGenome Biol20012300510.1016/B0-12-370879-6/00155-1
  2. 2Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010; 2010:article ID 218142, 18 pages.
    YunYRWonJEJeonELeeSKangWJoHet alFibroblast growth factors: biology, function, and application for tissue regenerationJ Tissue Eng20102010article ID 2181421810.4061/2010/218142304264121350642
  3. 3Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 2005; 287:390-402.1621623210.1016/j.ydbio.2005.09.011
    ThisseBThisseCFunctions and regulations of fibroblast growth factor signaling during embryonic developmentDev Biol200528739040216216232
  4. 4Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun. 2001; 288:413-9.10.1006/bbrc.2001.577711606058
    TsutsumiSShimazuAMiyazakiKPanHKoikeCYoshidaEet alRetention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGFBiochem Biophys Res Commun2001288413911606058
  5. 5Kato Y Gospodarowicz D. Sulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factor. J Cell Biol. 1985; 100:477-85.10.1083/jcb.100.2.4773968172
    KatoY Gospodarowicz DSulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factorJ Cell Biol19851004778521134453968172
  6. 6Yeoh JS, de Haan G. Fibroblast growth factors as regulators of stem cell self-renewal and aging. Mech Ageing Dev. 2007; 128:17-24.1711842410.1016/j.mad.2006.11.005
    YeohJSdeHaan GFibroblast growth factors as regulators of stem cell self-renewal and agingMech Ageing Dev2007128172417118424
  7. 7Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000; 227:271-8.10.1006/dbio.2000.991211071754
    AmitMCarpenterMKInokumaMSChiuCPHarrisCPWaknitzMAet alClonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of cultureDev Biol2000227271811071754
  8. 8Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006; 24:185-7.10.1038/nbt117716388305
    LudwigTELevensteinMEJonesJMBerggrenWTMitchenERFraneJLet alDerivation of human embryonic stem cells in defined conditionsNat Biotechnol200624185716388305
  9. 9Osathanon T, Nowwarote N, Pavasant P. Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCg signaling pathway. J Cell Biochem. 2011; 112:1807-16.10.1002/jcb.2309721381082
    OsathanonTNowwaroteNPavasantPBasic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCg signaling pathwayJ Cell Biochem201111218071621381082
  10. 10Sukarawan W, Nowwarote N, Kerdpon P, Pavasant P, Osathanon T. Effect of basic fibroblast growth factor on pluripotent marker expression and colony forming unit capacity of stem cells isolated from human exfoliated deciduous teeth. Odontology. 2014; 102: 160-6.10.1007/s10266-013-0124-323872868
    SukarawanWNowwaroteNKerdponPPavasantPOsathanonTEffect of basic fibroblast growth factor on pluripotent marker expression and colony forming unit capacity of stem cells isolated from human exfoliated deciduous teethOdontology2014102160623872868
  11. 11Osathanon T, Nowwarote N, Manokawinchoke J, Pavasant P. bFGF and JAGGED1 regulate alkaline phosphatase expression and mineralization in dental tissue-derived mesenchymal stem cells. J Cell Biochem. 2013; 114:2551-61.10.1002/jcb.2460223749297
    OsathanonTNowwaroteNManokawinchokeJPavasantPbFGF and JAGGED1 regulate alkaline phosphatase expression and mineralization in dental tissue-derived mesenchymal stem cellsJ Cell Biochem2013114255161
  12. 12Yuan S, Pan Q, Fu CJ, Bi Z. Effect of growth factors (BMP-4/7 & bFGF) on proliferation & osteogenic differentiation of bone marrow stromal cells. Indian J Med Res. 2013; 138:104-10.24056563
    YuanSPanQFuCJBiZEffect of growth factors (BMP-4/7 & bFGF) on proliferation & osteogenic differentiation of bone marrow stromal cellsIndian J Med Res201313810410
  13. 13Bai Y, Li P, Yin G, Huang Z, Liao X, Chen X, et al. BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Biotechnol Lett. 2013; 35:301-8.2314317410.1007/s10529-012-1084-3
    BaiYLiPYinGHuangZLiaoXChenXet alBMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cellsBiotechnol Lett2013353018
  14. 14Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry – part I: stem cell sources. J Prosthodont Res. 2012; 56:151-65.10.1016/j.jpor.2012.06.00122796367
    EgusaHSonoyamaWNishimuraMAtsutaIAkiyamaKStem cells in dentistry – part I: stem cell sourcesJ Prosthodont Res20125615165
  15. 15Machado E, Fernandes MH, Gomes Pde S. Dental stem cells for craniofacial tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 113: 728-33.2267701810.1016/j.tripleo.2011.05.039
    MachadoEFernandesMHGomesPde SDental stem cells for craniofacial tissue engineeringOral Surg Oral Med Oral Pathol Oral Radiol201211372833
  16. 16Sedgley CM, Botero TM. Dental stem cells and their sources. Dent Clin North Am. 2012; 56:549-61.10.1016/j.cden.2012.05.00422835537
    SedgleyCMBoteroTMDental stem cells and their sourcesDent Clin North Am20125654961
  17. 17Eleuterio E, Trubiani O, Sulpizio M, Di Giuseppe F, Pierdomenico L, Marchisio M, et al. Proteome of human stem cells from periodontal ligament and dental pulp. PLoS One. 2013; 8:e71101.2394069610.1371/journal.pone.0071101
    EleuterioETrubianiOSulpizioMDiGiuseppe FPierdomenicoLMarchisioMet alProteome of human stem cells from periodontal ligament and dental pulpPLoS One20138e71101
  18. 18Kanafi MM, Ramesh A, Gupta PK, Bhonde RR. Influence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teeth. Cells Tissues Organs. 2013; 198:198-208.2419206810.1159/000354901
    KanafiMMRameshAGuptaPKBhondeRRInfluence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teethCells Tissues Organs2013198198208
  19. 19Hakki SS, Kayis SA, Hakki EE, Bozkurt SB, Duruksu G, Unal ZS, et al. Comparison of MSCs isolated from pulp and periodontal ligament. J Periodontol. 2014; : 1-17.
    HakkiSSKayisSAHakkiEEBozkurtSBDuruksuGUnalZSet alComparison of MSCs isolated from pulp and periodontal ligamentJ Periodontol2014117
  20. 20Sawangmake C, Nowwarote N, Pavasant P, Chansiripornchai P, Osathanon T. A feasibility study of an in vitro differentiation potential toward insulin-producing cells by dental tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2014; 452: 581-7.10.1016/j.bbrc.2014.08.121
    SawangmakeCNowwaroteNPavasantPChansiripornchaiPOsathanonTA feasibility study of an in vitro differentiation potential toward insulin-producing cells by dental tissue-derived mesenchymal stem cellsBiochem Biophys Res Commun20144525817
  21. 21Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32:263-7.1071662410.1016/S1357-2725(99)00133-8
    Okada-BanMThieryJPJouanneauJFibroblast growth factor-2Int J Biochem Cell Biol2000322637
  22. 22Baird A, Schubert D, Ling N, Guillemin R. Receptorand heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA. 1988; 85: 2324-8.10.1073/pnas.85.7.2324
    BairdASchubertDLingNGuilleminRReceptorand heparin-binding domains of basic fibroblast growth factorProc Natl Acad Sci USA198885232482799842832850
  23. 23Yayon A, Aviezer D, Safran M, Gross JL, Heldman Y, Cabilly S, et al. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc Natl Acad Sci USA. 1993; 90:10643-7.10.1073/pnas.90.22.10643
    YayonAAviezerDSafranMGrossJLHeldmanYCabillySet alIsolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope libraryProc Natl Acad Sci USA199390106437478337504274
  24. 24Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol. 2014; 9:92-101.2405710310.1007/s11481-013-9501-5
    WoodburyMEIkezuTFibroblast growth factor-2 signaling in neurogenesis and neurodegenerationJ Neuroimmune Pharmacol2014992101410980224057103
  25. 25Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000; 7:165-97.10.1677/erc.0.007016511021964
    PowersCJMcLeskeySWWellsteinAFibroblast growth factors, their receptors and signalingEndocr Relat Cancer200071659711021964
  26. 26Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science. 1993; 259:1918-21.10.1126/science.84563188456318
    KanMWangFXuJCrabbJWHouJMcKeehanWLAn essential heparin-binding domain in the fibroblast growth factor receptor kinaseScience19932591918218456318
  27. 27Hatch NE. FGF signaling in craniofacial biological control and pathological craniofacial development. Crit Rev Eukaryot Gene Expr. 2010; 20:295-311.2139550310.1615/CritRevEukarGeneExpr.v20.i4.20
    HatchNEFGF signaling in craniofacial biological control and pathological craniofacial developmentCrit Rev Eukaryot Gene Expr20102029531121395503
  28. 28Wada M, Gelfman CM, Matsunaga H, Alizadeh M, Morse L, Handa JT, et al. Density-dependent expression of FGF-2 in response to oxidative stress in RPE cells in vitro. Curr Eye Res. 2001; 23:226-31.1180348510.1076/ceyr.23.3.226.5467
    WadaMGelfmanCMMatsunagaHAlizadehMMorseLHandaJTet alDensity-dependent expression of FGF-2 in response to oxidative stress in RPE cells in vitroCurr Eye Res2001232263111803485
  29. 29Olwin BB, Hauschka SD. Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture. J Cell Biol. 1988;107:761-9.10.1083/jcb.107.2.7612843547
    OlwinBBHauschkaSDCell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in cultureJ Cell Biol1988107761921152152843547
  30. 30Moscatelli D. Autocrine downregulation of fibroblast growth factor receptors in F9 teratocarcinoma cells. J Cell Physiol. 1994; 160:555-62.10.1002/jcp.10416003198077293
    MoscatelliDAutocrine downregulation of fibroblast growth factor receptors in F9 teratocarcinoma cellsJ Cell Physiol1994160555628077293
  31. 31Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocr Rev. 1997; 18:26-45.9034785
    BikfalviAKleinSPintucciGRifkinDBBiological roles of fibroblast growth factor-2Endocr Rev199718264510.1210/edrv.18.1.02929034785
  32. 32Su N, Du X, Chen L. FGF signaling: its role in bone development and human skeleton diseases. Front Biosci. 2008; 13:2842-65.1798175810.2741/2890
    SuNDuXChenLFGF signaling: its role in bone development and human skeleton diseasesFront Biosci20081328426517981758
  33. 33Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW. Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem. 2008; 283:5287-95.10.1074/jbc.M70691720018171671
    YangHXiaYLuSQSoongTWFengZWBasic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1J Biol Chem200828352879518171671
  34. 34Murakami S. Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy?. Periodontol. 2011; 56:188-208.10.1111/j.1600-0757.2010.00365.x
    MurakamiSPeriodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy?Periodontol20115618820821501244
  35. 35Chen G, Gulbranson DR, Yu P, Hou Z, Thomson JA. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells. 2012; 30:623-30.2221311310.1002/stem.1021
    ChenGGulbransonDRYuPHouZThomsonJAThermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cellsStem Cells20123062330353880822213113
  36. 36Park JH, Hong J. Continuous release of bFGF from multilayer nanofilm to maintain undifferentiated human iPS cell cultures. Integr Biol (Camb). 2014; 6:1196-200.10.1039/C4IB00210E25316061
    ParkJHHongJContinuous release of bFGF from multilayer nanofilm to maintain undifferentiated human iPS cell culturesIntegr Biol (Camb)20146119620025316061
  37. 37Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’ Sullivan C, et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells. 2005; 23:315-23.1574992610.1634/stemcells.2004-0211
    XuCRoslerEJiangJLebkowskiJSGoldJDO’Sullivan Cet alBasic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned mediumStem Cells2005233152315749926
  38. 38Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005; 118: 4495-509.10.1242/jcs.0255316179608
    VallierLAlexanderMPedersenRAActivin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cellsJ Cell Sci2005118449550916179608
  39. 39Park Y, Choi I Y, Lee SJ, Lee SR, Sung HJ, Kim JH, et al. Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation. Stem Cells Dev. 2010; 19: 1713-22.2020168110.1089/scd.2010.0014
    ParkYChoiI YLeeSJLeeSRSungHJKimJHet alUndifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementationStem Cells Dev20101917132220201681
  40. 40Xi J, Wang Y, Zhang P, He L, Nan X, Yue W, et al. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells. PLoS One. 2010; 5:e14457.10.1371/journal.pone.001445721209880
    XiJWangYZhangPHeLNanXYueWet alHuman fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cellsPLoS One20105e14457301269221209880
  41. 41Park Y, Kim JH, Lee SJ, Choi IY, Park SJ, Lee SR, et al. Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors. Stem Cells Dev. 2011; 20:1901-10.10.1089/scd.2010.049621231869
    ParkYKimJHLeeSJChoiIYParkSJLeeSRet alHuman feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factorsStem Cells Dev20112019011021231869
  42. 42Quang T, Marquez M, Blanco G, Zhao Y. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. PLoS One. 2014; 9:e86031.10.1371/journal.pone.008603124465853
    QuangTMarquezMBlancoGZhaoYDosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cellsPLoS One20149e86031389501524465853
  43. 43Kong YP, Tu CH, Donovan PJ, Yee AF. Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration. Acta Biomater. 2013; 9:6369-80.10.1016/j.actbio.2013.01.03623391989
    KongYPTuCHDonovanPJYeeAFExpression of Oct4 in human embryonic stem cells is dependent on nanotopographical configurationActa Biomater2013963698023391989
  44. 44Yu P, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell. 2011; 8:326-34.10.1016/j.stem.2011.01.00121362572
    YuPPanGYuJThomsonJAFGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiationCell Stem Cell2011832634305273521362572
  45. 45Kang HB, Kim JS, Kwon HJ, Nam KH, Youn HS, Sok DE, et al. Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells Dev. 2005; 14:395-401.1613722810.1089/scd.2005.14.395
    KangHBKimJSKwonHJNamKHYounHSSokDEet alBasic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1Stem Cells Dev20051439540116137228
  46. 46Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun. 2005; 330:934-42.10.1016/j.bbrc.2005.03.05815809086
    WangGZhangHZhaoYLiJCaiJWangPet alNoggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layersBiochem Biophys Res Commun20053309344215809086
  47. 47Wang X, Lin G, Martins-Taylor K, Zeng H, Xu RH. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem. 2009; 284: 34054-64.1982845310.1074/jbc.M109.052290
    WangXLinGMartins-TaylorKZengHXuRHInhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cellsJ Biol Chem20092843405464279717619828453
  48. 48Go MJ, Takenaka C, Ohgushi H. Effect of forced expression of basic fibroblast growth factor in human bone marrow-derived mesenchymal stromal cells. J Biochem. 2007; 142:741-8.10.1093/jb/mvm18917956905
    GoMJTakenakaCOhgushiHEffect of forced expression of basic fibroblast growth factor in human bone marrow-derived mesenchymal stromal cellsJ Biochem2007142741817956905
  49. 49Zhang X, Wang Y, Gao Y, Liu X, Bai T, Li M, et al. Maintenance of high proliferation and multipotent potential of human hair follicle-derived mesenchymal stem cells by growth factors. Int J Mol Med. 2013; 31:913-21.10.3892/ijmm.2013.127223403715
    ZhangXWangYGaoYLiuXBaiTLiMet alMaintenance of high proliferation and multipotent potential of human hair follicle-derived mesenchymal stem cells by growth factorsInt J Mol Med2013319132123403715
  50. 50Ramasamy R, Tong CK, Yip WK, Vellasamy S, Tan BC, Seow HF. Basic fibroblast growth factor modulates cell cycle of human umbilical cord-derived mesenchymal stem cells. Cell Prolif. 2012; 45:132-9.10.1111/j.1365-2184.2012.00808.x22309282
    RamasamyRTongCKYipWKVellasamySTanBCSeowHFBasic fibroblast growth factor modulates cell cycle of human umbilical cord-derived mesenchymal stem cellsCell Prolif2012451329649549222309282
  51. 51Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest. 2000; 105:1085-93.10.1172/JCI864110772653
    MonteroAOkadaYTomitaMItoMTsurukamiHNakamuraTet alDisruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formationJ Clin Invest200010510859330083110772653
  52. 52Pitaru S, Kotev-Emeth S, Noff D, Kaffuler S, Savion N. Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J Bone Miner Res. 1993; 8:919-29.8213254
    PitaruSKotev-EmethSNoffDKaffulerSSavionNEffect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in cultureJ Bone Miner Res199389192910.1002/jbmr.56500808048213254
  53. 53Sakaguchi DS, Janick LM, Reh TA. Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia. Dev Dyn. 1997; 209:387-98.926426210.1002/(SICI)1097-0177(199708)209:4<;387::AID-AJA6>3.0.CO;2-E
    SakaguchiDSJanickLMRehTABasic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and gliaDev Dyn199720938798
  54. 54Pri-Chen S, Pitaru S, Lokiec F, Savion N. Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture. Bone. 1998; 23:111-7.10.1016/S8756-3282(98)00087-89701469
    Pri-ChenSPitaruSLokiecFSavionNBasic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in cultureBone1998231117
  55. 55Hanada K, Dennis JE, Caplan AI. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res. 1997; 12:1606-14.10.1359/jbmr.1997.12.10.16069333121
    HanadaKDennisJECaplanAIStimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cellsJ Bone Miner Res199712160614
  56. 56Park MS, Kim SS, Cho SW, Choi CY, Kim BS. Enhancement of the osteogenic efficacy of osteoblast transplantation by the sustained delivery of basic fibroblast growth factor. J Biomed Mater Res B Appl Biomater. 2006; 79:353-9.16924630
    ParkMSKimSSChoSWChoiCYKimBSEnhancement of the osteogenic efficacy of osteoblast transplantation by the sustained delivery of basic fibroblast growth factorJ Biomed Mater Res B Appl Biomater200679353910.1002/jbm.b.30549
  57. 57Zheng YH, Su K, Jian YT, Kuang SJ, Zhang ZG. Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. J Tissue Eng Regen Med. 2011; 5:540-50.2169579510.1002/term.346
    ZhengYHSuKJianYTKuangSJZhangZGBasic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructsJ Tissue Eng Regen Med2011554050
  58. 58Oh SA, Lee HY, Lee JH, Kim TH, Jang JH, Kim HW, et al. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation. Tissue Eng Part A. 2012; 18:1087-100.10.1089/ten.tea.2011.036022145747
    OhSALeeHYLeeJHKimTHJangJHKimHWet alCollagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiationTissue Eng Part A2012181087100
  59. 59Tanaka H, Ogasa H, Barnes J, Liang CT. Actions of bFGF on mitogenic activity and lineage expression in rat osteoprogenitor cells: effect of age. Mol Cell Endocrinol. 1999; 150:1-10.1041129410.1016/S0303-7207(99)00046-5
    TanakaHOgasaHBarnesJLiangCTActions of bFGF on mitogenic activity and lineage expression in rat osteoprogenitor cells: effect of ageMol Cell Endocrinol1999150110
  60. 60Qian J, Jiayuan W, Wenkai J, Peina W, Ansheng Z, Shukai S, et al. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J. 2015; 48:690-700.10.1111/iej.12368
    QianJJiayuanWWenkaiJPeinaWAnshengZShukaiSet alBasic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent mannerInt Endod J201548690700
  61. 61Li B, Qu C, Chen C, Liu Y, Akiyama K, Yang R, et al. Basic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signaling. Oral Dis. 2012; 18:285-92.10.1111/j.1601-0825.2011.01878.x22151351
    LiBQuCChenCLiuYAkiyamaKYangRet alBasic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signalingOral Dis20121828592
  62. 62Wang H, Zou Q, Boerman OC, Nijhuis AW, Jansen JA, Li Y, et al. Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J Control Release. 2013; 166:172-81.10.1016/j.jconrel.2012.12.015
    WangHZouQBoermanOCNijhuisAWJansenJALiYet alCombined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivoJ Control Release201316617281
  63. 63Lai WT, Krishnappa V, Phinney DG. Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cells. 2011; 29: 1102-11.10.1002/stem.66121608080
    LaiWTKrishnappaVPhinneyDGFibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levelsStem Cells201129110211341055721608080
  64. 64Rose LC, Fitzsimmons R, Lee P, Krawetz R, Rancourt DE, Uludag H. Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation. J Tissue Eng Regen Med. 2013; 7: 371-82.10.1002/term.53222674886
    RoseLCFitzsimmonsRLeePKrawetzRRancourtDEUludagHEffect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiationJ Tissue Eng Regen Med201373718222674886
  65. 65Hatch NE, Li Y, Franceschi RT. FGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2. J Bone Miner Res. 2009; 24:652-62.10.1359/jbmr.08121319049325
    HatchNELiYFranceschiRTFGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2J Bone Miner Res20092465262265951219049325
  66. 66Hatch NE, Nociti F, Swanson E, Bothwell M, Somerman M. FGF2 alters expression of the pyrophosphate/ phosphate regulating proteins, PC-1, ANK and TNAP, in the calvarial osteoblastic cell line, MC3T3E1(C4). Connect Tissue Res. 2005; 46:184-92.10.1080/0300820050023720316546821
    HatchNENocitiFSwansonEBothwellMSomermanMFGF2 alters expression of the pyrophosphate/ phosphate regulating proteins, PC-1, ANK and TNAP, in the calvarial osteoblastic cell line, MC3T3E1(C4)Connect Tissue Res2005461849216546821
  67. 67Xiao L, Sobue T, Esliger A, Kronenberg MS, Coffin JD, Doetschman T, et al. Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells. Bone. 2010; 47:360-70.2051039210.1016/j.bone.2010.05.021
    XiaoLSobueTEsligerAKronenbergMSCoffinJDDoetschmanTet alDisruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cellsBone20104736070294743720510392
  68. 68Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells. 2011; 29:1727-37.10.1002/stem.72021898687
    FierroFAKalomoirisSSondergaardCSNoltaJAEffects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapyStem Cells201129172737378425821898687
  69. 69Inoue S, Imamura M, Tabata Y. Adipogenic differentiation of adipo-stromal cells incubated with basic fibroblast growth factor in solution and coated form. J Biomater Sci Polym Ed. 2009; 20:483-94.1922844910.1163/156856209X416494
    InoueSImamuraMTabataYAdipogenic differentiation of adipo-stromal cells incubated with basic fibroblast growth factor in solution and coated formJ Biomater Sci Polym Ed2009204839419228449
  70. 70Song X, Li Y, Chen X, Yin G, Huang Q, Chen Y, et al. bFGF promotes adipocyte differentiation in human mesenchymal stem cells derived from embryonic stem cells. Genet Mol Biol. 2014; 37:127-34.10.1590/S1415-4757201400010001924688300
    SongXLiYChenXYinGHuangQChenYet albFGF promotes adipocyte differentiation in human mesenchymal stem cells derived from embryonic stem cellsGenet Mol Biol20143712734
  71. 71Neubauer M, Fischbach C, Bauer-Kreisel P, Lieb E, Hacker M, Tessmar J, et al. Basic fibroblast growth factor enhances PPARg ligand-induced adipogenesis of mesenchymal stem cells. FEBS Lett. 2004; 577: 277-83.10.1016/j.febslet.2004.10.020
    NeubauerMFischbachCBauer-KreiselPLiebEHackerMTessmarJet alBasic fibroblast growth factor enhances PPARg ligand-induced adipogenesis of mesenchymal stem cellsFEBS Lett20045772778315527799
  72. 72Lu Q, Li M, Zou Y, Cao T. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. J Control Release. 2014; 174:43-50.10.1016/j.jconrel.2013.11.00724240014
    LuQLiMZouYCaoTDelivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesisJ Control Release2014174435024240014
  73. 73Kakudo N, Shimotsuma A, Kusumoto K. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun. 2007; 359:239-44.1754328310.1016/j.bbrc.2007.05.070
    KakudoNShimotsumaAKusumotoKFibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cellsBiochem Biophys Res Commun200735923944
  74. 74Neubauer M, Hacker M, Bauer-Kreisel P, Weiser B, Fischbach C, Schulz MB, et al. Adipose tissue engineering based on mesenchymal stem cells and basic fibroblast growth factor in vitro. Tissue Eng. 2005; 11:1840-51.10.1089/ten.2005.11.184016411830
    NeubauerMHackerMBauer-KreiselPWeiserBFischbachCSchulzMBet alAdipose tissue engineering based on mesenchymal stem cells and basic fibroblast growth factor in vitroTissue Eng200511184051
  75. 75Stemple DL, Mahanthappa NK, Anderson DJ. Basic FGF induces neuronal differentiation, cell division, and NGF dependence in chromaffin cells: a sequence of events in sympathetic development. Neuron. 1988; 1:517-25.10.1016/0896-6273(88)90182-1
    StempleDLMahanthappaNKAndersonDJBasic FGF induces neuronal differentiation, cell division, and NGF dependence in chromaffin cells: a sequence of events in sympathetic developmentNeuron1988151725
  76. 76Dai Z, Peng HB. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J Neurosci. 1995; 15:5466-75.7643195
    DaiZPengHBPresynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factorJ Neurosci19951554667510.1523/JNEUROSCI.15-08-05466.1995
  77. 77Niknejad H, Peirovi H, Ahmadiani A, Ghanavi J, Jorjani M. Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells. Eur Cell Mater. 2010; 19:22-9.10.22203/eCM.v019a0320077402
    NiknejadHPeiroviHAhmadianiAGhanaviJJorjaniMDifferentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cellsEur Cell Mater201019229
  78. 78Guan M, Xu Y, Wang W, Lin S. Differentiation into neurons of rat bone marrow-derived mesenchymal stem cells. Eur Cytokine Netw. 2014; 25:58-63.25336204
    GuanMXuYWangWLinSDifferentiation into neurons of rat bone marrow-derived mesenchymal stem cellsEur Cytokine Netw201425586310.1684/ecn.2014.035725336204
  79. 79Jang S, Cho HH, Cho YB, Park JS, Jeong HS. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol. 2010; 11:25.10.1186/1471-2121-11-2520398362
    JangSChoHHChoYBParkJSJeongHSFunctional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolinBMC Cell Biol20101125286779120398362
  80. 80Hu F, Wang X, Liang G, Lv L, Zhu Y, Sun B, et al. Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Reprogram. 2013; 15:224-32.23713433
    HuFWangXLiangGLvLZhuYSunBet alEffects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cellsCell Reprogram2013152243210.1089/cell.2012.0077366624823713433
  81. 81Kang ML, Kwon JS, Kim MS. Induction of neuronal differentiation of rat muscle-derived stem cells in vitro using basic fibroblast growth factor and ethosuximide. Int J Mol Sci. 2013; 14:6614-23.10.3390/ijms1404661423528890
    KangMLKwonJSKimMSInduction of neuronal differentiation of rat muscle-derived stem cells in vitro using basic fibroblast growth factor and ethosuximideInt J Mol Sci201314661423364565723528890
  82. 82Nakano R, Edamura K, Nakayama T, Teshima K, Asano K, Narita T, et al. Differentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factor. J Vet Med Sci. 2015; 77:27-35.10.1292/jvms.14-028425284120
    NakanoREdamuraKNakayamaTTeshimaKAsanoKNaritaTet alDifferentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factorJ Vet Med Sci2015772735434953525284120
  83. 83Zhu H, Yang A, Du J, Li D, Liu M, Ding F, et al. Basic fibroblast growth factor is a key factor that induces bone marrow mesenchymal stem cells towards cells with Schwann cell phenotype. Neurosci Lett. 2014; 559:82-7.10.1016/j.neulet.2013.11.04424309293
    ZhuHYangADuJLiDLiuMDingFet alBasic fibroblast growth factor is a key factor that induces bone marrow mesenchymal stem cells towards cells with Schwann cell phenotypeNeurosci Lett201455982724309293
  84. 84McAvoy JW, Chamberlain C G. Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development. 1989; 107:221-8.2632221
    McAvoyJWChamberlainC GFibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentrationDevelopment1989107221810.1242/dev.107.2.2212632221
  85. 85Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest. 2005; 115:1724-33.1595183810.1172/JCI23418
    Rosenblatt-VelinNLeporeMGCartoniCBeermannFPedrazziniTFGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytesJ Clin Invest2005115172433114358715951838
  86. 86Khezri S, Valojerdi MR, Sepehri H, Baharvand H. Effect of basic fibroblast growth factor on cardiomyocyte differentiation from mouse embryonic stem cells. Saudi Med J. 2007; 28:181-6.17268693
    KhezriSValojerdiMRSepehriHBaharvandHEffect of basic fibroblast growth factor on cardiomyocyte differentiation from mouse embryonic stem cellsSaudi Med J2007281816
  87. 87Subramony SD, Su A, Yeager K, Lu HH. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds. J Biomech. 2014; 47:2189-96.2426727110.1016/j.jbiomech.2013.10.016
    SubramonySDSuAYeagerKLuHHCombined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffoldsJ Biomech201447218996405878524267271
  88. 88Duan B, Hockaday LA, Das S, Xu CY, Butcher JT. Comparison of mesenchymal stem cell source differentiation towards human pediatric aortic valve interstitial cells within 3D engineered matrices. Tissue Eng Part C Methods. 2015; 21: [Epub ahead of print] DOI: 10.1089/ten.tec.2014.0589
    DuanBHockadayLADasSXuCYButcherJTComparison of mesenchymal stem cell source differentiation towards human pediatric aortic valve interstitial cells within 3D engineered matricesTissue Eng Part C Methods201521[Epub ahead of print] DOI10.1089/ten.tec.2014.0589452301125594437
  89. 89Morito A, Kida Y, Suzuki K, Inoue K, Kuroda N, Gomi K, et al. Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells. Arch Histol Cytol. 2009; 72:51-64.1978941210.1679/aohc.72.51
    MoritoAKidaYSuzukiKInoueKKurodaNGomiKet alEffects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cellsArch Histol Cytol200972516419789412
  90. 90Hidaka T, Nagasawa T, Shirai K, Kado T, Furuichi Y. FGF-2 induces proliferation of human periodontal ligament cells and maintains differentiation potentials of STRO-1+/CD146+ periodontal ligament cells. Arch Oral Biol. 2012; 57:830-40.10.1016/j.archoralbio.2011.12.00322244620
    HidakaTNagasawaTShiraiKKadoTFuruichiYFGF-2 induces proliferation of human periodontal ligament cells and maintains differentiation potentials of STRO-1+/CD146+ periodontal ligament cellsArch Oral Biol2012578304022244620
  91. 91Wu J, Huang GT, He W, Wang P, Tong Z, Jia Q, et al. Basic fibroblast growth factor enhances stemness of human stem cells from the apical papilla. J Endod. 2012; 38:614-22.10.1016/j.joen.2012.01.01422515889
    WuJHuangGTHeWWangPTongZJiaQet alBasic fibroblast growth factor enhances stemness of human stem cells from the apical papillaJ Endod20123861422349997222515889
  92. 92Kim J, Park JC, Kim SH, Im GI, Kim BS, Lee JB, et al. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis. 2014; 20:191-204.10.1111/odi.1208923496287
    KimJParkJCKimSHImGIKimBSLeeJBet alTreatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teethOral Dis20142019120423496287
  93. 93Lee JH, Um S, Jang JH, Seo BM. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res. 2012; 348:475-84.10.1007/s00441-012-1392-x22437875
    LeeJHUmSJangJHSeoBMEffects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cellsCell Tissue Res20123484758422437875
  94. 94He H, Yu J, Liu Y, Lu S, Liu H, Shi J, et al. Effects of FGF2 and TGFb on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int. 2008; 32: 827-34.10.1016/j.cellbi.2008.03.013
    HeHYuJLiuYLuSLiuHShiJet alEffects of FGF2 and TGFb on the differentiation of human dental pulp stem cells in vitroCell Biol Int2008328273418442933
  95. 95Kono K, Maeda H, Fujii S, Tomokiyo A, Yamamoto N, Wada N, et al. Exposure to transforming growth factor-b1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. Cell Tissue Res. 2013; 352:249-63.10.1007/s00441-012-1543-0
    KonoKMaedaHFujiiSTomokiyoAYamamotoNWadaNet alExposure to transforming growth factor-b1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell linesCell Tissue Res20133522496323324989
  96. 96Kim YS, Min KS, Jeong DH, Jang JH, Kim HW, Kim EC. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells. J Endod. 2010; 36:1824-30.10.1016/j.joen.2010.08.02020951295
    KimYSMinKSJeongDHJangJHKimHWKimECEffects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cellsJ Endod20103618243020951295
  97. 97Murakami S, Takayama S, Kitamura M, Shimabukuro Y, Yanagi K, Ikezawa K, et al. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res. 2003; 38: 97-103.1255894310.1034/j.1600-0765.2003.00640.x
    MurakamiSTakayamaSKitamuraMShimabukuroYYanagiKIkezawaKet alRecombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogsJ Periodontal Res2003389710312558943
  98. 98Nowwarote N, Pavasant P, Osathanon T. Role of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teeth. Arch Oral Biol. 2015; 60:408-15.10.1016/j.archoralbio.2014.11.01725526625
    NowwaroteNPavasantPOsathanonTRole of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teethArch Oral Biol2015604081525526625
  99. 99Wang X, Sha XJ, Li GH, Yang FS, Ji K, Wen LY, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol. 2012; 57:1231-40.10.1016/j.archoralbio.2012.02.01422455989
    WangXShaXJLiGHYangFSJiKWenLYet alComparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cellsArch Oral Biol20125712314022455989
  100. 100Takayama S, Murakami S, Shimabukuro Y, Kitamura M, Okada H. Periodontal regeneration by FGF-2 (bFGF) in primate models. J Dent Res. 2001; 80:2075-9.1180876510.1177/00220345010800121001
    TakayamaSMurakamiSShimabukuroYKitamuraMOkadaHPeriodontal regeneration by FGF-2 (bFGF) in primate modelsJ Dent Res2001802075911808765
  101. 101Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res. 2011; 90:1013-8.10.1177/002203451140842621586666
    SuzukiTLeeCHChenMZhaoWFuSYQiJJet alInduced migration of dental pulp stem cells for in vivo pulp regenerationJ Dent Res2011901013821586666
  102. 102Kikuchi N, Kitamura C, Morotomi T, Inuyama Y, Ishimatsu H, Tabata Y, et al. Formation of dentin-like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogels. J Endod. 2007; 33:1198-202.10.1016/j.joen.2007.07.02517889689
    KikuchiNKitamuraCMorotomiTInuyamaYIshimatsuHTabataYet alFormation of dentin-like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogelsJ Endod200733119820217889689
  103. 103Ishimatsu H, Kitamura C, Morotomi T, Tabata Y, Nishihara T, Chen KK, et al. Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels. J Endod. 2009; 35: 858-65.1948218610.1016/j.joen.2009.03.049
    IshimatsuHKitamuraCMorotomiTTabataYNishiharaTChenKKet alFormation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogelsJ Endod2009358586519482186
  104. 104Hu CC, Zhang C, Qian Q, Tatum NB. Reparative dentin formation in rat molars after direct pulp capping with growth factors. J Endod. 1998; 24:744-51.10.1016/S0099-2399(98)80166-09855826
    HuCCZhangCQianQTatumNBReparative dentin formation in rat molars after direct pulp capping with growth factorsJ Endod19982474451
  105. 105Shirakata Y, Taniyama K, Yoshimoto T, Miyamoto M, Takeuchi N, Matsuyama T, et al. Regenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogs. J Clin Periodontol. 2010; 37:374-81.2044726110.1111/j.1600-051X.2010.01539.x
    ShirakataYTaniyamaKYoshimotoTMiyamotoMTakeuchiNMatsuyamaTet alRegenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogsJ Clin Periodontol2010373748120447261
  106. 106Saito A, Saito E, Kuboki Y, Kimura M, Nakajima T, Yuge F, et al. Periodontal regeneration following application of basic fibroblast growth factor-2 in combination with beta tricalcium phosphate in class III furcation defects in dogs. Dent Mater J. 2013; 32:256-62.2353876110.4012/dmj.2012-171
    SaitoASaitoEKubokiYKimuraMNakajimaTYugeFet alPeriodontal regeneration following application of basic fibroblast growth factor-2 in combination with beta tricalcium phosphate in class III furcation defects in dogsDent Mater J2013322566223538761
  107. 107Dereka XE, Markopoulou CE, Mamalis A, Pepelassi E, Vrotsos IA. Time- and dose-dependent mitogenic effect of basic fibroblast growth factor combined with different bone graft materials: an in vitro study. Clin Oral Implants Res. 2006; 17:554-9.10.1111/j.1600-0501.2006.01262.x
    DerekaXEMarkopoulouCEMamalisAPepelassiEVrotsosIATime- and dose-dependent mitogenic effect of basic fibroblast growth factor combined with different bone graft materials: an in vitro studyClin Oral Implants Res200617554916958696
  108. 108Kinoshita Y, Matsuo M, Todoki K, Ozono S, Fukuoka S, Tsuzuki H, et al. Alveolar bone regeneration using absorbable poly(L-lactide-co-e-caprolactone)/ b-tricalcium phosphate membrane and gelatin sponge incorporating basic fibroblast growth factor. Int J Oral Maxillofac Surg. 2008; 37:275-81.10.1016/j.ijom.2007.11.010
    KinoshitaYMatsuoMTodokiKOzonoSFukuokaSTsuzukiHet alAlveolar bone regeneration using absorbable poly(L-lactide-co-e-caprolactone)/ b-tricalcium phosphate membrane and gelatin sponge incorporating basic fibroblast growth factorInt J Oral Maxillofac Surg2008372758118262760
  109. 109Matsumoto G, Hoshino J, Kinoshita Y, Sugita Y, Kubo K, Maeda H, et al. Alveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: an experimental study in the dog. J Biomater Appl. 2012; 27:485-93.2207134910.1177/0885328211414940
    MatsumotoGHoshinoJKinoshitaYSugitaYKuboKMaedaHet alAlveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: an experimental study in the dogJ Biomater Appl2012274859322071349
  110. 110Villegas SN, Canham M, Brickman JM. FGF signalling as a mediator of lineage transitions–evidence from embryonic stem cell differentiation. J Cell Biochem. 2010; 110:10-20.20336694
    VillegasSNCanhamMBrickmanJMFGF signalling as a mediator of lineage transitions–evidence from embryonic stem cell differentiationJ Cell Biochem2010110102010.1002/jcb.2253620336694
  111. 111Nishino Y, Ebisawa K, Yamada Y, Okabe K, Kamei Y, Ueda M. Human deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defect. J Craniofac Surg. 2011; 22: 438-42.2140356310.1097/SCS.0b013e318207b507
    NishinoYEbisawaKYamadaYOkabeKKameiYUedaMHuman deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defectJ Craniofac Surg2011224384221403563
  112. 112Lee TH, Kim WT, Ryu CJ, Jang YJ. Optimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblasts. Biochem Cell Biol. 2015; 26:1-8.
    LeeTHKimWTRyuCJJangYJOptimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblastsBiochem Cell Biol2015261810.1139/bcb-2014-014025789782
  113. 113Yang JW, Zhang YF, Sun ZY, Song GT, Chen Z. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl. 2015. [Epub ahead of print]25791684
    YangJWZhangYFSunZYSongGTChenZDental pulp tissue engineering with bFGF-incorporated silk fibroin scaffoldsJ Biomater Appl2015[Epub ahead of print]10.1177/088532821557729625791684
  114. 114Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, et al. Neurosphere generation from dental pulp of adult rat incisor. Eur J Neurosci. 2008; 27: 538-48.1827930710.1111/j.1460-9568.2008.06026.x
    SasakiRAokiSYamatoMUchiyamaHWadaKOkanoTet alNeurosphere generation from dental pulp of adult rat incisorEur J Neurosci2008275384818279307
  115. 115Takeuchi N, Hayashi Y, Murakami M, Alvarez FJ, Horibe H, Iohara K, et al. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factor. Oral Dis. 2015; 21:113-22.2449521110.1111/odi.12227
    TakeuchiNHayashiYMurakamiMAlvarezFJHoribeHIoharaKet alSimilar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factorOral Dis2015211132224495211
  116. 116Suphanantachat S, Iwata T, Ishihara J, Yamato M, Okano T, Izumi Y. A role for c-Kit in the maintenance of undifferentiated human mesenchymal stromal cells. Biomaterials. 2014; 35:3618-26.2446235510.1016/j.biomaterials.2014.01.031
    SuphanantachatSIwataTIshiharaJYamatoMOkanoTIzumiYA role for c-Kit in the maintenance of undifferentiated human mesenchymal stromal cellsBiomaterials20143536182624462355
  117. 117Dangaria SJ, Ito Y, Walker C, Druzinsky R, Luan X, Diekwisch TG. Extracellular matrix-mediated differentiation of periodontal progenitor cells. Differentiation. 2009; 78:79-90.1943334410.1016/j.diff.2009.03.005
    DangariaSJItoYWalkerCDruzinskyRLuanXDiekwischTGExtracellular matrix-mediated differentiation of periodontal progenitor cellsDifferentiation2009787990274484519433344
DOI: https://doi.org/10.5372/1905-7415.0903.395 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 271 - 283
Published on: Jan 31, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Nunthawan Nowwarote, Chenphop Sawangmake, Prasit Pavasant, Thanaphum Osathanon, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.