Have a personal or library account? Click to login
Osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells promoted by overexpression of osterix Cover

Osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells promoted by overexpression of osterix

Open Access
|Feb 2017

References

  1. 1. Feldmann RE Jr, Bieback K, Maurer MH, Kalenka A, Burgers HF, Gross B, et al. Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis. 2005; 26: 2749-58.10.1002/elps.200410406
  2. 2. Chen TL, Shen WJ, Kraemer FB. Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. J Cell Biochem. 2001; 2:187-99.10.1002/jcb.1145
  3. 3. Allan EH, Ho PW, Umezawa A, Hata J, Makishima F, Gillespie MT, et al. Differentiation potential of a mouse bone marrow stromal cell line. J Cell Biochem. 2003; 1: 158-69.10.1002/jcb.10614
  4. 4. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem. 2001; 82:583-90.10.1002/jcb.1174
  5. 5. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003:33:919-26.10.1016/j.bone.2003.07.005
  6. 6. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006; 91:1017-26.
  7. 7. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells. 2003; 21:105-10.10.1634/stemcells.21-1-105
  8. 8. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007; 25:1384-92.10.1634/stemcells.2006-0709
  9. 9. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004; 22: 1330-7.10.1634/stemcells.2004-0013
  10. 10. Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells. 2006; 24: 679-85.10.1634/stemcells.2004-0308
  11. 11. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc nger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002; 108: 17-29.10.1016/S0092-8674(01)00622-5
  12. 12. Omoteyama K, Takagi M. The effects of Sp7/Osterix gene silencing in the chondroprogenitor cell line, ATDC5. Biochem Biophys Res Commun. 2010; 403:242-6.10.1016/j.bbrc.2010.11.023
  13. 13. Lee JS, Lee JM, Im GI. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells. Biomaterials. 2011; 32:760-8.10.1016/j.biomaterials.2010.09.042
  14. 14. Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, et al. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet. 2002; 32:633-8.10.1038/ng1015
  15. 15. Cao Y, Zhou Z, de Crombrugghe B, Nakashima K, Guan H, Duan X, et al. Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res. 2005; 65: 1124-8.10.1158/0008-5472.CAN-04-2128
  16. 16. Tu Q, Valverde P, Chen J. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells. Biochem Biophys Res Commun. 2006; 341: 1257-65.10.1016/j.bbrc.2006.01.092
  17. 17. Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, et al. Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol. 2009; 90:261-9.10.1007/s12185-009-0377-3
  18. 18. Xu J, Liao W, Gu D, Liang L, Liu M, Du W, et al. Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cell Physiol Biochem. 2009; 23:415-24.10.1159/000218188
  19. 19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods.1983; 65: 55-63.10.1016/0022-1759(83)90303-4
  20. 20. Betz VM, Betz OB, Harris MB, Vrahas MS, Evans CH. Bone tissue engineering and repair by gene therapy. Front Biosci. 2008; 13:833-41.10.2741/272417981592
  21. 21. Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng. 2004; 32:136-47.10.1023/B:ABME.0000007798.78548.b8
  22. 22. Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng. 2007; 13:1135-50.10.1089/ten.2007.0096
  23. 23. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003; 423:349-55.10.1038/nature01660
  24. 24. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000; 16:191-220.10.1146/annurev.cellbio.16.1.191
  25. 25. Wu X, Wang S, Chen B, An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 2010; 340:549-67.10.1007/s00441-010-0978-4
  26. 26. Huang W, Rudkin GH, Carlsen B, Ishida K, Ghasri P, Anvar B, et al. Overexpression of BMP-2 modulates morphology, growth, and gene expression in osteoblastic cells. Exp Cell Res. 2000; 2274:226-34.
  27. 27. Cho HH, Park HT, Kim YJ, Bae YC, Suh KT, Jung JS. Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem. 2005; 96:533-42.10.1002/jcb.20544
  28. 28. Igarashi M, Kamiya N, Hasegawa M, Kasuya T, Takahashi T, Takagi M. Inductive effects of dexamethasone on the gene expression of Cbfa1, Osterix and bone matrix proteins during differentiation of cultured primary rat osteoblasts. J Mol Histol. 2004; 35:3-10.10.1023/B:HIJO.0000020883.33256.fe
  29. 29. Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol. 1998; 76:899-910.10.1139/o99-005
  30. 30. Beck GR Jr, Sullivan EC, Moran E, Zerler B. Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem. 1998; 68:269-80.10.1002/(SICI)1097-4644(19980201)68:2<;269::AID-JCB13>3.0.CO;2-A
  31. 31. Sun S, Wang Z, Hao Y. Osterix overexpression enhances osteoblast differentiation of muscle satellite cells in vitro.Int J Oral Maxillofac Surg. 2008; 37:350-6.10.1016/j.ijom.2007.11.024
  32. 32. Kim YJ, Kim HN, Park EK, Lee BH, Ryoo HM, Kim SY, et al. The bone-related Zn ­nger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene. 2006; 366:145-51.10.1016/j.gene.2005.08.021
  33. 33. Huang S, Wang Z. Influence of platelet-rich plasma on proliferation and osteogenic differentiation of skeletal muscle satellite cells: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 110:453-62.10.1016/j.tripleo.2010.02.00920452253
  34. 34. Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004; 26:179-84.
  35. 35. Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, et al. Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int. 2005; 77:45-54.10.1007/s00223-004-1288-1145141416007483
  36. 36. Golub EE. Role of Matrix Vesicles in Biomineralization. Biochim Biophys Acta. 2009; 1790: 1592-8.10.1016/j.bbagen.2009.09.006278368919786074
  37. 37. Allori AC, Sailon AM, Warren SM. Biological basis of bone formation, remodeling, and repair-part II: extracellular matrix. Tissue Eng Part B Rev. 2008; 14: 275-83.10.1089/ten.teb.2008.008319183102
  38. 38. Gersbach CA, Byers BA, Pavlath GK, Garcia AJ. Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp Cell Res. 2004; 300:406-17.10.1016/j.yexcr.2004.07.03115475005
  39. 39. Yang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT. In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res. 2003; 18: 705-15.10.1359/jbmr.2003.18.4.705356515912674331
  40. 40. Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res. 2002; 17:1931-44.10.1359/jbmr.2002.17.11.193112412799
DOI: https://doi.org/10.5372/1905-7415.0706.236 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 743 - 752
Published on: Feb 4, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Shengyun Huang, Shanshan Jia, Guijun Liu, Dong Fang, Dongsheng Zhang, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.