Have a personal or library account? Click to login
Review article. Strategies for in vivo targeted gene silencing Cover

Review article. Strategies for in vivo targeted gene silencing

By: Hanghui Wang,  Yixin Song and  Lianfang Du  
Open Access
|Feb 2017

References

  1. 1. Davidson BL, McCray PB Jr. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011; 12:329-40.10.1038/nrg2968709766521499294
  2. 2. Ali N, Datta SK, Datta K.RNA interference in designing transgenic crops. GM Crops. 2010; 1:207-13.10.4161/gmcr.1.4.1334421844675
  3. 3. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001; 15:188-200.10.1101/gad.86230131261311157775
  4. 4. Novina CD, Sharp PA. The RNAi revolution. Nature. 2004; 430:161-4.10.1038/430161a15241403
  5. 5. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature. 2004; 431:371-8.10.1038/nature0287015372045
  6. 6. Shen Y, Wang B, Lu Y, Ouahab A, Li Q, Tu J. A novel tumor-targeted delivery system with hydrophobized hyaluronic acid-spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery. Int J Pharm. 2011; 414:233-43. Epub 2011 Apr 23.10.1016/j.ijpharm.2011.04.04921545832
  7. 7. Castanotto D, Rossi JJ. The promises and pitfalls of RNA- interference-based therapeutics. Nature. 2009; 457:426-33.10.1038/nature07758270266719158789
  8. 8. Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009; 61:850-62. Epub 2009 May 5.10.1016/j.addr.2009.04.01819422869
  9. 9. Walton SP, Wu M, Gredell JA, Chan C. Designing highly active siRNA for therapeutic applications. FEBS J. 2010; 277: 4806-13. doi: 10.1111/j.1742-4658. 2010.07903.x.
  10. 10. Samuel-Abraham S, Leonard JN. Staying on message: design principles for controlling nonspecific responses to siRNA. FEBS J. 2010; 277:4828-36. doi: 10.1111/ j.1742-4658.2010.07905.x.
  11. 11. Dubey PK, Mishra V, Jain S, Mahor S, Vyas SP. Liposomes modified with cyclic RGD peptide for tumor targeting.J Drug Target. 2004; 12:257-64.10.1080/10611860410001728040
  12. 12. Lu PY, Xie FY, Woodle MC. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol Med. 2005; 11:104-13.10.1016/j.molmed.2005.01.005
  13. 13. Pirollo KF, Chang EH. Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res. 2008; 68:1247-50.10.1158/0008-5472.CAN-07-5810
  14. 14. Guo P, Coban O, Snead NM, Trebley J, Hoeprich S, Guo S, et al. Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev. 2010; 62:650-66. Epub 2010 Mar 15.10.1016/j.addr.2010.03.008
  15. 15. Shoemaker BA, Zhang D, Thangudu RR, Tyagi M, Fong JH, Marchler-Bauer A, et al. Inferred Biomolecular Interaction Server-a web server to analyze and predict protein interacting partners and binding sites. Nucleic Acids Res. 2010; 38(Database issue):D518-24. Epub 2009 Oct 20.10.1093/nar/gkp842
  16. 16. Liu B. Exploring cell type-specific internalizing antibodies for targeted delivery of siRNA. Brief Funct Genomic Proteomic. 2007; 6:112-9. Epub 2007 Jul 31.10.1093/bfgp/elm015
  17. 17. Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF. Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer. 2010; 10:10.10.1186/1471-2407-10-10
  18. 18. Cerchia L, Hamm J, Libri D, Tavitian B, de Franciscis V. Nucleic acid aptamers in cancer medicine. FEBS Lett. 2002; 528:12-6.10.1016/S0014-5793(02)03275-1
  19. 19. McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, et al. Cell type-specific delivery of siRNA with aptamer-siRNA chimeras. Nat Biotechnol. 2006; 24:1005-15.10.1038/nbt122316823371
  20. 20. Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Annu Rev Anal Chem (Palo Alto Calif). 2009; 2:241-64.10.1146/annurev.anchem.1.031207.11285120636061
  21. 21. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol. 2009; 27:839-49.10.1038/nbt.1560279169519701187
  22. 22. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery withligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004; 32:e149.10.1093/nar/gnh14052881715520458
  23. 23. de Wolf HK, Snel CJ, Verbaan FJ, Schiffelers RM, Hennink WE, Storm G. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. Int J Pharm. 2007; 331:167-75. Epub 2006 Oct 26.10.1016/j.ijpharm.2006.10.02917134859
  24. 24. Leng Q, Scaria P, Zhu J, Ambulos N, Campbell P, Mixson AJ. Highly branched HK peptides are effective carriers of siRNA. J Gene Med. 2005; 7:977-86.10.1002/jgm.74815772938
  25. 25. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, et al. Targeted gene silencing using RGDLabeled chitosan nanoparticles. Clin Cancer Res. 2010; 16:3910-22. Epub 2010 Jun 10.10.1158/1078-0432.CCR-10-0005291298420538762
  26. 26. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010; 464:1067-70. Epub 2010 Mar 21.10.1038/nature08956285540620305636
  27. 27. Bartlett DW, Su H, Hildebrant IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA. 2007; 104:15549-54. Epub 2007 Sep 17.10.1073/pnas.0707461104197821817875985
  28. 28. Pirollo KF, Rait A, Zhou Q, Hwang SH, Dagata JA, Zon G, et al. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 2007; 67:2938-43.10.1158/0008-5472.CAN-06-453517409398
  29. 29. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol. 2003; 163:871-8.10.1083/jcb.200304132217367914638862
  30. 30. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA. 2002; 99:7444-9.10.1073/pnas.06218959912425012032302
  31. 31. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem. 2007; 18:1391-6. Epub 2007 Jul 14.10.1021/bc060367e17630789
  32. 32. Dohmen C, Wagner E. Multifunctional CPP polymer system for tumor-targeted pDNA and siRNA delivery. Methods Mol Biol. 2011; 683:453-63.10.1007/978-1-60761-919-2_3221053149
  33. 33. Kim SW, Kim NY, Choi YB, Park SH, Yang JM, Shin S. RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system.J Control Release. 2010; 143:335-43. Epub 2010 Jan 14.10.1016/j.jconrel.2010.01.00920079391
  34. 34. Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliver Rev. 2007; 59:134-40. Epub 2007 Mar 15.10.1016/j.addr.2007.03.00417451840
  35. 35. Crombez L, Morris MC, Dufort S, Aldrian-Herrada G, Nguyen Q, McMaster G, et al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res. 2009; 37:4559-69. Epub 2009 May 29.10.1093/nar/gkp451272427619483097
  36. 36. Lu ZX, Liu LT, Qi XR. Development of small interfering rNA delivery system using PEI-PEG-APRPG polymer for antiangiogenic vascular endothelial growth factor tumor-targeted therapy. Int J Nanomedicine. 2011; 6: 1661-73. Epub 2011 Aug 11.10.2147/IJN.S22293316095221904456
  37. 37. Kumar P, Wu H, McBride JL,J ung KE, Kim MH, Davisdon BL,et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007; 448:39-43. Epub 2007 Jun 17.10.1038/nature0590117572664
  38. 38. York AW, Huang F, McCormick CL. Rational design of targeted cancer therapeutics through the multiconjugation of folate and cleavable siRNA to RAFT-synthesized (HPMA-s-APMA) copolymers. Biomacromolecules. 2010; 11:505-14.10.1021/bm901249n281902620050670
  39. 39. Murase Y, Asai T, Katanasaka Y, Sugiyama T, Shimizu K, Maeda N, et al. A novel DDS strategy, “dualtargeting”, and its application for antineovascular therapy. Cancer Lett. 2010; 287:165-71. Epub 2009 Jul 17.10.1016/j.canlet.2009.06.00819616372
  40. 40. Thomas M, Kularatne SA, Qi L, Kleindl P, Leamon CP, Hansen MJ, et al. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues. Ann N Y Acad Sci. 2009; 1175:32-9.10.1111/j.1749-6632.2009.04977.x19796075
  41. 41. Zhang P, Chen Y, Jiang X, Tu Z, Zou L. Tumortargeted efficiency of shRNA vector harboring chimera hTERT/U6 promoter. Oncol Rep. 2010; 23: 1309-16.
  42. 42. Kim SS, Garg H, Joshi A, Manjunath N. Strategies for targeted nonviral delivery of siRNA in vivo. Trends Mol Med. 2009; 15:491-500. Epub 2009 Oct 19.10.1016/j.molmed.2009.09.001444103119846342
  43. 43. Tian Z, Wang H, Jia Z, Shi J, Tang J, Mao L, et al. Tumor-targeted inhibition by a novel strategymimoretrovirus expressing siRNA targeting the Pokemon gene. Curr Cancer Drug Targets. 2010; 10: 932-41.10.2174/15680091079335790720879980
  44. 44. Kim JH, Bae SM, Na MH, Shin H, Yang YJ, Min KH, et al. Facilitated intracellular delivery of peptideguided nanoparticles in tumor tissues. J Control Release. 2012; 157:493-9. Epub 2011 Sep 16.10.1016/j.jconrel.2011.09.07021945679
  45. 45. Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm. 2008; 70:718-25. Epub 2008 Jul 4.10.1016/j.ejpb.2008.06.02618647651
  46. 46. Wu XL, Kim JH, Koo H, Bae SM, Shin H, Kim MS, et al. Tumor-targeting peptide conjugated pHresponsive micelles as a potential drug carrier for cancer therapy. Bioconjug Chem. 2010; 21:208-13.10.1021/bc900528320073455
  47. 47. Wang J, Liu W, Tu Q, Wang J, Song N, Zhang Y, et al. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery. Biomacromolecules. 2011; 12:228-34. Epub 2010 Dec 15.10.1021/bm101206g21158381
  48. 48. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010; 62:90-9. Epub 2010 Apr 7.10.1016/j.phrs.2010.03.00520380880
  49. 49. Abeylath SC, Ganta S, Iyer AK, Amiji M. Combinatorialdesigned multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc Chem Res. 2011; 44:1009-17. Epub 2011 Jul 15.10.1021/ar200010621761902
  50. 50. Taratula O, Garbuzenko O, Savla R, Wang YA, He H, Minko T. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Deliv. 2011; 8:59-69.10.2174/15672011179366364221034421
  51. 51. Taratula O, Garbuzenko OB, Chen AM, Minko T. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation codelivery of anticancer drugs and siRNA. J Drug Target. 2011; 19:900-14.10.3109/1061186X.2011.62240421981718
  52. 52. Tseng YC, Huang L. Self-assembled lipid nanomedicines for siRNA tumor targeting. J Biomed Nanotechnol. 2009; 5:351-63.10.1166/jbn.2009.1044551241920055081
  53. 53. Ryu JH, Koo H, Sun IC, Yuk SH, Choi K, Kim K, Kwon IC. Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy. Adv Drug Deliv Rev. 2012. [Epub ahead of print]10.1016/j.addr.2012.06.01222772034
  54. 54. Akhter S, Ahmad Z, Singh A, Ahmad I, Rahman M, Anwar M, et al. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des. 2011; 17:1834-50.10.2174/13816121179639100121568874
  55. 55. Sanguino A, Lopez-Berestein G, Sood AK. Strategies for in vivo siRNA delivery in cancer. Mini Rev Med Chem. 2008; 8:248-55.10.2174/13895570878374407418336345
  56. 56. Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther. 2008; 15:858-63. Epub 2008 Apr 17.10.1038/gt.2008.6818418415
  57. 57. Han Z, Conley SM, Naash MI. AAV and compacted DNA nanoparticles for the treatment of retinal disorders: challenges and future prospects. Invest Ophthalmol Vis Sci. 2011; 52:3051-9.10.1167/iovs.10-6916310901521558483
  58. 58. Boeckle S, Wagner E. Optimizing targeted gene delivery: chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J. 2006; 8:E731-42.10.1208/aapsj080483275137017285739
  59. 59. Yotnda P, Davis AR, Hicks MJ, Templeton NS, Brenner MK. Liposomal enhancement of the antitumor activity of conditionally replicationcompetent adenoviral plasmids. Mol Ther. 2004; 9: 489-95.10.1016/j.ymthe.2004.01.01815093179
  60. 60. Curiel DT, Wagner E, Cotten M, Birnstiel ML, Agarwal S, Li CM, et al. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther. 1992; 3:147-54.10.1089/hum.1992.3.2-1471391034
  61. 61. Wagner E, Zatloukal K, Cotten M, Kirlappos H, Mechtler K, Curiel DT, et al. Coupling of adenovirus to transferring- polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci USA. 1992; 89:6099-103.10.1073/pnas.89.13.6099494451631096
  62. 62. Cho SK, Kwon YJ. Simultaneous gene transduction and silencing using stimuli-responsive viral/nonviral chimeric nanoparticles. Biomaterials. 2012; 33:3316-23. Epub 2012 Jan 24.10.1016/j.biomaterials.2012.01.02722281425
  63. 63. Wei F, McConnell KI, Yu TK, Suh J. Conjugation of paclitaxel on adeno-associated virus (AAV) nanoparticles for co-delivery of genes and drugs. Eur J Pharm Sci. 2012; 46:167-72. Epub 2012 Mar 3.10.1016/j.ejps.2012.02.02222406091
  64. 64. Musick MA, McConnell KI, Lue JK, Wei F, Chen C, Suh J. Reprogramming virus nanoparticles to bind metal ions upon activation with heat. Biomacromolecules. 2011; 12:2153-8. Epub 2011 Apr 29.10.1021/bm200225x21528841
  65. 65. Hwang JH, Lee S, Kim E, Kim JS, Lee CH, Ahn IS, et al. Heparin-coated superparamagnetic nanoparticlemediated adeno- associated virus delivery for enhancing cellular transduction. Int J Pharm. 2011; 421:397-404. Epub 2011 Oct 13.10.1016/j.ijpharm.2011.10.01922016032
  66. 66. Figueiredo M, Esenaliev R. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors. J Drug Deliv. 2012; 2012:767839. Epub 2012 Feb 28.10.1155/2012/767839331233722506124
  67. 67. Zheng MM, Zhou XY, Wang LP, Wang ZG. Experimental research of RB94 gene transfection into retinoblastoma cells using ultrasound -targeted microbubble destruction. Ultrasound Med Biol. 2012; 38:1058-66. Epub 2012 Apr 21.10.1016/j.ultrasmedbio.2012.02.00722502879
  68. 68. Zhong S, Shu S, Wang Z, Luo J, Zhong W, Ran H, et al. Enhanced homing of mesenchymal stem cells to the ischemic myocardium by ultrasound-targeted microbubble destruction. Ultrasonics. 2012; 52:281-6. Epub 2011 Aug 27.10.1016/j.ultras.2011.08.01321937069
  69. 69. Huang Q, Deng J, Xie Z, Wang F, Chen S, Lei B, et al. Effective gene transfer into central nervous system following ultrasound-microbubbles-induced opening of the blood-brain barrier. Ultrasound Med Biol. 2012; 38:1234-43.10.1016/j.ultrasmedbio.2012.02.01922677255
  70. 70. Chen YC, Jiang LP, Liu NX, Wang ZH, Hong K, Zhang QP. P85, Optison microbubbles and ultrasound cooperate in mediating plasmid DNA transfection in mouse skeletal muscles in vivo. Ultrason Sonochem. 2011; 18:513-9. Epub 2010 Sep 21.10.1016/j.ultsonch.2010.08.01320863738
  71. 71. Fujii H, Li SH, Wu J, Miyagi Y, Yau TM, Rakowski H, et al. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur Heart J. 2011; 32:2075-84. Epub 2010 Dec 31.10.1093/eurheartj/ehq47521196445
  72. 72. Dash R, Azab B, Shen XN, Sokhi UK, Sarkar S, Su ZZ, et al. Developing an effective gene therapy for prostate cancer: New technologies with potential to translate from the laboratory into the clinic. Discov Med. 2011; 11:46-56.
  73. 73. Kobulnik J, Kuliszewski MA, Stewart DJ, Lindner JR, Leong-Poi H. Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection.J Am Coll Cardiol. 2009; 54: 1735-42.10.1016/j.jacc.2009.07.02319850216
  74. 74. Li HL, Zheng XZ, Wang HP, Li F, Wu Y, Du LF. Ultrasound- targeted microbubble destruction enhances AAV-mediated gene transfection in human RPE cells in vitro and rat retina in vivo. Gene Ther. 2009; 16:1146-53. Epub 2009 Jul 2.10.1038/gt.2009.8419571889
  75. 75. Zheng X, Ji P, Hu J.Sonoporation using microbubbles promotes lipofectamine-mediated siRNA transduction to rat retina. Bosn J Basic Med Sci. 2011; 11:147-52.10.17305/bjbms.2011.2565436254721875415
  76. 76. Christiansen JP, Leong-Poi H, Klibanov AL, Kaul S, Lindner JR. Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation. 2002; 105:1764-7.10.1161/01.CIR.0000015466.89771.E211956115
  77. 77. Borden MA, Sarantos MR, Stieger SM, Simon SI, Ferrara KW, Dayton PA. Ultrasound radiation force modulates ligand availability on targeted contrast agents. Mol Imaging. 2006; 5:139-47.10.2310/7290.2006.00016
  78. 78. Zheng X, Du L, Wang H, Gu Q. A novel approach to attenuate proliferative vitreoretinopathy using ultrasound-targeted microbubble destruction and recombinant adeno-associated virus-mediated RNA interference targeting transforming growth factor-β2 and platelet-derived growth factor-B. J Gene Med. 2012; 14:339-47.10.1002/jgm.262922499528
  79. 79. Huang J, Gao J, Lv X, Li G, Hao D, Yao X, et al. Target gene therapy of glioma: overexpression of BAX gene under the control of both tissue-specific promoter and hypoxia-inducible element. Acta Biochim Biophys Sin. 2010; 42:274-80.10.1093/abbs/gmq01620383466
  80. 80. Li XH, Zhou P, Wang LH, Tian SM, Qian Y, Chen LR, et al. The targeted gene (KDRP-CD/TK) therapy of breast cancer mediated by SonoVue and ultrasound irradiation in vitro. Ultrasonics. 2012; 52:186-91. Epub 2011 Aug 18.10.1016/j.ultras.2011.08.00221906771
  81. 81. Ke H, Xing Z, Zhao B, Wang J, Liu J, Guo C, et al. Quantum-dot-modified microbubbles with bi-mode imaging capabilities. Nanotechnology. 2009; 20:425105. Epub 2009 Sep 25.10.1088/0957-4484/20/42/42510519779227
  82. 82. Chen ZY, Liang K, Qiu RX. Targeted gene delivery in tumor xenografts by the combination of ultrasoundtargeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis. J Exp Clin Cancer Res. 2010; 29:152.10.1186/1756-9966-29-152300364121092274
DOI: https://doi.org/10.5372/1905-7415.0704.201 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 463 - 475
Published on: Feb 4, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Hanghui Wang, Yixin Song, Lianfang Du, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.