Have a personal or library account? Click to login
Investigation of the high frequency band of heart rate variability: identification of preeclamptic pregnancy from normal pregnancy in Oman Cover

Investigation of the high frequency band of heart rate variability: identification of preeclamptic pregnancy from normal pregnancy in Oman

Open Access
|Feb 2017

References

  1. 1. Al-Hinai F. Complications of pregnancy and delivery among Omani women in different parity groups, M.Sc. Thesis at Sultan Qaboos University, College of Medicine, 2003.
  2. 2. Yang CC, Chao TC, Kuo TB, Yin CS, Chen HI. Preeclamptic pregnancy is associated with increased sympathetic and decreased parasympathetic control of HR. Am J Physiol Heart Circ Physiol. 2000; 278:H1269-73.10.1152/ajpheart.2000.278.4.H1269
  3. 3. Airaksinen KE, Kirkinen P, Takkunen JT. Autonomic nervous dysfunction in severe pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 1985; 19:269-76.10.1016/0028-2243(85)90040-1
  4. 4. Brooks VL, Kane CM, Van Winkle DM. Altered heart rate baroreflex during pregnancy: role of sympathetic and parasympatheticnervous systems. Am J Physiol. 1997; 273:R960-6.10.1152/ajpregu.1997.273.3.R9609321874
  5. 5. Greenwood JP, Stoker JB, Walker JJ, Mary DA. Sympathetic nerve discharge in normal pregnancy and pregnancy-induced hypertension. J Hypertens. 1998; 16:617-24.10.1097/00004872-199816050-000099797173
  6. 6. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996; 17:354-81.
  7. 7. Hossen A, Heute U. Fully adaptive evaluation of SB-DFT, proceedings of IEEE Int. Symposium on Circuits and Systems, Chicago, Illinois, 1993.
  8. 8. Hossen A. Power spectral density estimation via wavelet decomposition. Electronics Letters. 2004; 40:1055-6.10.1049/el:20045235
  9. 9. Hossen A, Al--Ghunaimi B, Hassan MO. Subband decomposition soft decision algorithm for heart rate variability analysis in patients with OSA and normal controls. Signal Processing. 2005; 85:95-106.10.1016/j.sigpro.2004.09.004
  10. 10. Hossen A. A soft decision algorithm for obstructive sleep apnea patient classification based on fast estimation of wavelet entropy of RRI data. Technol Health Care. 2005; 3:151-65.10.3233/THC-2005-13302
  11. 11. Hossen A, Al--Ghunaimi B. A wavelet-based soft decision technique for screening of patients with congestive heart failure. Biomed Signal Proces. 2007; 2:135-43.10.1016/j.bspc.2007.05.008
  12. 12. Hossen A, Muthuraman M, Raethjen J, Deuschl G, Heute U. Discrimination of parkinsonian tremor from essential tremor by implementation of a wavelet-based soft decision technique on EMG and accelerometer signals. Biomed Signal Proces. 2005; 5:181-8.10.1016/j.bspc.2010.02.005
  13. 13. Hermida RC, Ayala DE, Mojón A, Fernández JR. Time-qualified reference values for ambulatory blood pressure monitoring in pregnancy. Hypertension. 2001; 38:746-52.10.1161/01.HYP.38.3.74611566969
  14. 14. Provost F, Fawcett T. Robust classification for imprecise environments. Mach Learn. 2000; 42:203-31.10.1023/A:1007601015854
  15. 15. Rangayyan RM. Biomedical signal analysis: a casestudy approach. IEEE. NJ; 2001. 10.1109/9780470544204
DOI: https://doi.org/10.5372/1905-7415.0703.185 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 339 - 346
Published on: Feb 4, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Abdulnasir Hossen, Deepali Jaju, Alaa Barhoum, Vaidyanathan Gowri, Ilham Hamdi, Mohammed Othman Hassan, Lamya Al-Kharusi, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.